課程名稱 |
基本邏輯 Elementary Logic |
開課學期 |
111-1 |
授課對象 |
學程 神經生物與認知科學學程 |
授課教師 |
鄧敦民 |
課號 |
Phl1008 |
課程識別碼 |
104 10400 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期四7,8,9,10(14:20~18:20) |
上課地點 |
水源階梯201 |
備註 |
本課程中文授課,使用英文教科書。 總人數上限:90人 |
|
|
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
本課程將會簡介形式邏輯的基本概念,並使學生具備理解哲學文獻中會出現的形式邏輯符號與推論之基本能力。課程分成三個主要的部份:(1)介紹命題邏輯(PL)之語言、語意,以及推論系統;(2)介紹述詞邏輯(QL)之語言、語意,以及推論系統;(3)介紹其它基本邏輯概念,包含簡單的集合論(非公理化式的,包含集合的基本運算以及函數與關係),以及簡單的機率概念與運算。
在本課程中,配合形式邏輯的介紹,一些相關的邏輯哲學議題亦會加以討論,例如關於命題、邏輯連詞、指涉、確定描述詞之哲學討論。 |
課程目標 |
本課程目標在於使學生能
(1) 對於形式邏輯有基本的認識
(2) 學會如何把自然語言中的論証翻譯至適當的形式語言中,並驗證其有效性
(3) 具備使用形式系統來建構證明與邏輯推論之能力
(4) 具備理解哲學文獻中含有邏輯符號之論証的基本技能
(5) 對於簡單的機率計算有基本的概念 |
課程要求 |
本學期課程主要將採取遠距教學方式進行,需要加選的同學請以email聯絡授課老師索取加選授權碼,需要旁聽的同學也請聯絡授課老師取得課程資源。 |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Textbooks:
1. Bergmann, M., Moor, J. and Nelson, J., The Logic Book, 5th ed. McGraw-Hill, 2008.
2. Hacking, I., An Introduction to Probability and Inductive Logic. Cambridge: Cambridge University Press, 2001.
Readings:
1. Smith, P., An Introduction to Formal Logic, Cambridge: Cambridge University Press, 2003.
2. Hurley, P. J., A Concise Introduction to Logic, 11th ed. Boston: Wadsworth, 2012.
3. Barwise, J. and Etchemendy, J., Language, Proof and Logic, 2nd ed., CSLI, 2011.
4. Hodges, W., Logic: An Introduction to Elementary Logic, 2nd ed., Penguin, 2001.
5. Lemmon, E. J., Beginning Logic, 2nd ed., London: Chapman & Hall, 1997.
6. Sider, T., Logic for Philosophy, Oxford: Oxford University Press, 2010.
7. Van Dalen, D., Logic and structure, 5th ed. Springer, 2012.
8. Enderton, H., A Mathematical Introduction to Logic, Second edition, New York: Academic Press, 2001.
9. Halmos, P. R., Naive Set Theory, Springer, 1960.
10. Read, S., Thinking about Logic: An Introduction to the Philosophy of Logic, Oxford: Oxford University Press, 1994 |
指定閱讀 |
1. Bergmann, M., Moor, J. and Nelson, J., The Logic Book, 5th ed. McGraw-Hill, 2008.
2. Hacking, I., An Introduction to Probability and Inductive Logic. Cambridge: Cambridge University Press, 2001. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
作業 |
25% |
取最高的4次作業平均 |
2. |
期中考1 |
25% |
|
3. |
期中考2 |
25% |
|
4. |
期末考 |
25% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/8 |
Basic Notions of Logic |
第2週 |
9/15 |
Sentential Logic: Symbolization and Syntax |
第3週 |
9/22 |
Sentential Logic: Semantics |
第4週 |
9/29 |
Sentential Logic: Truth-Tree |
第5週 |
10/6 |
Sentential Logic: Derivations |
第6週 |
10/13 |
Midterm Exam (I) |
第7週 |
10/20 |
Inductive logic and Probability |
第8週 |
10/27 |
Probability Calculus and Bayesian Probability |
第9週 |
11/3 |
Predicate Logic: Symbolisation and Syntax (1) |
第10週 |
11/10 |
Predicate Logic: Symbolisation and Syntax (2) |
第11週 |
11/17 |
Midterm Exam (II) |
第12週 |
11/24 |
Predicate Logic: Semantics |
第13週 |
12/1 |
Predicate Logic: Truth-Trees |
第14週 |
12/8 |
Predicate Logic: Derivations (1) |
第15週 |
12/15 |
Predicate Logic: Derivations (2) |
第16週 |
12/22 |
Final Exam |
|