課程名稱 |
微積分甲上 CALCULUS (GENERAL MATHEMATICS) (A)(1) |
開課學期 |
97-1 |
授課對象 |
|
授課教師 |
朱樺 |
課號 |
MATH1201 |
課程識別碼 |
201 101A1 |
班次 |
01 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) |
上課地點 |
新102新102 |
備註 |
統一教學.大二以上限20人.一5為實習課.可兼充通識名額3人。A6*:量化分析與數學素養領域。可充抵通識 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/971cal01 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
1. Functions and Models
2. Limits and Derivatives
3. Differentiation Rule
4. Applications of Differentiation
5. Integrals
6. Applications of Integration
7. Techniques of Integration
8. Further Applications of Integration
9. Differential Equations
10. Parametric Equations and Polar Coordinates |
課程目標 |
After completing this course, students should be well versed in the mathematical language needed for applying the concepts of calculus to numerous applications in science and engineering. They should also be well prepared for courses in differential equations, linear algebra, or advanced calculus.
|
課程要求 |
其它請上微積分統一教學網查詢:http://www.math.ntu.edu.tw/~calb/
課程講義、筆記、勾選習題,請上朱樺老師網站查詢:http://www.math.ntu.edu.tw/~hchu/Calculus/ |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
James Stewart, CALCULUS, Early Transcendentals, 6th edition |
指定閱讀 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
期中考 |
40% |
|
2. |
期末考 |
40% |
|
3. |
作業 |
20% |
小考+作業+演習課表現 |
|
週次 |
日期 |
單元主題 |
第1週 |
9/17,9/19 |
[1.5] Exponential Functions
[1.6] Inverse Functions and Logarithms
[2.1] The Tangent and Velocity Problems
[2.2] The Limit of a Function |
第2週 |
9/24,9/26 |
[2.3] Calculating Limits Using the Limit Laws
[2.4] The Precise Definition of a Limit
[2.5] Continuity
[2.6] Limits at Infinity; HorizontalAsymptotes |
第3週 |
10/01,10/03 |
[2.7] Derivatives and Rates of Change
[2.8] The Derivative as a Function
[3.1] Derivatives of Polynomials and Exponential Functions
[3.2] The Product and Quotient Rules
[3.3] Derivatives of Trigonometric Functions |
第4週 |
10/08,10/10 |
[3.4] The Chain Rule
[3.5] Implicit Differentiation
[3.6] Derivatives of Logarithmic Functions |
第5週 |
10/15,10/17 |
[3.7] Rates of Change in the Natural and Social Sciences
[3.8] Exponential Growth and Decay
[3.9] Related Rates
[3.10] Linear Approximations and Differentials
[3.11] Hyperbolic Functions |
第6週 |
10/22,10/24 |
[4.1] Maximum and Minimum Values
[4.2] The Mean Value Theorem
[4.3] How Derivatives Affect the Shape of a Graph
[4.4] Indeterminate Forms and L’Hospital’s Rule |
第7週 |
10/29,10/31 |
[4.5] Summary of Curve Sketching
[4.6] Graphing with Calculus and Calculators
[4.7] Optimization Problems
[4.8] Newton’s Method
[4.9] Antiderivatives |
第8週 |
11/05,11/07 |
[5.1] Areas and Distances
[5.2] The Definite Integral
[5.3] The Fundamental Theorem of Calculus
[5.4] Indefinite Integrals and the Net Change Theorem
[5.5] The Substitution Rule |
第9週 |
11/12,11/14 |
緩衝時間, Midterm Exam |
第10週 |
11/19,11/21 |
[6.1] Areas between Curves
[6.2] Volumes
[6.3] Volumes by Cylindrical Shells
[6.4] Work |
第11週 |
11/26,11/28 |
[6.5] Average Value of a Function
[7.1] Integration by Parts
[7.2] Trigonometric Integrals
[7.3] Trigonometric Substitution |
第12週 |
12/03,12/05 |
[7.4] Integration of Rational Functions by Partial Fractions
[7.5] Strategy for Integration
[7.6] Integration Using Tables and Computer Algebra Systems
[7.7] Approximate Integration |
第13週 |
12/10,12/12 |
[7.8] Improper Integrals
[8.1] Arc Length
[8.2] Area of a Surface of Revolution
[8.3] Applications to Physics and Engineering |
第14週 |
12/17,12/19 |
[8.4] Applications to Economics and Biology
[8.5] Probability
[9.1] Modeling with Differential Equations
[9.2] Direction Fields and Euler’s Method |
第15週 |
12/24,12/26 |
[9.3] Separable Equations
[9.4] Models for Population Growth
[9.5] Linear Equations
[9.6] Predator-Prey Systems |
第16週 |
12/31,1/02 |
[10.1] Curves Defined by Parametric Equations
[10.2] Calculus with Parametric Curves
[10.3] Polar Coordinates
[10.4] Areas and Lengths in Polar Coordinates |
第17週 |
1/07,1/09 |
緩衝時間 |
第18週 |
1/14,1/16 |
Final Exam |
|