課程資訊
課程名稱
微積分甲上
CALCULUS (GENERAL MATHEMATICS) (A)(1) 
開課學期
98-1 
授課對象
電機工程學系  
授課教師
陳君明 
課號
MATH1201 
課程識別碼
201 101A1 
班次
01 
學分
全/半年
全年 
必/選修
必修 
上課時間
星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) 
上課地點
新102新102新102 
備註
統一教學.大二以上限20人.一9為實習課.
限本系所學生(含輔系、雙修生)
總人數上限:100人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/981calculusA01 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

☆上課時間:三56 五56 、 實習課時間:一9。
☆各班實習課分組教室:將公告於微積分甲統一教學網站公佈。
☆微積分甲統一教學網站:http://www.math.ntu.edu.tw/~mathcal/a/ 。
☆各班助教Office Hour時間:將公告於微積分甲統一教學網站公佈。
☆習題:習題繳交與否依各授課教師規定;習題解答將於公佈於微積分甲統一教學網站。
☆期中、期末考題目以英文命題。 

課程目標
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions 
課程要求
High School Mathematics 
Office Hours
 
參考書目
James Stewart, Calculus Early Transcendentals, 6th edition 
指定閱讀
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Midterm exam 
40% 
 
2. 
Final exam 
40% 
 
3. 
Quizzes and/or homework 
20% 
 
 
課程進度
週次
日期
單元主題
第1週
09/14  [1.5] Exponential Functions [1.6] Inverse Functions and Logarithms [2.1] The Tangent and Velocity Problems [2.2] The Limit of a Function 
第2週
09/21  [2.3] Calculating Limits Using the Limit Laws [2.4] The Precise Definition of a Limit [2.5] Continuity [2.6] Limits at Infinity; Horizontal Asymptotes [2.7] Derivatives and Rates of Change 
第3週
09/28  [2.8] The Derivative as a Function [3.1] Derivatives of Polynomials and Exponential Functions [3.2] The Product and Quotient Rules [3.3] Derivatives of Trigonometric Functions 
第4週
10/05  [3.4] The Chain Rule [3.5] Implicit Differentiation [3.6] Derivatives of Logarithmic Functions [3.7] Rates of Change in the Natural and Social Sciences(※)[3.8] Exponential Growth and Decay 
第5週
10/12  [3.9] Related Rates [3.10] Linear Approximations and Differentials [3.11] Hyperbolic Functions(※)[4.1] Maximum and Minimum Values [4.2] The Mean Value Theorem 
第6週
10/19  [4.3] How Derivatives Affect the Shape of a Graph [4.4] Indeterminate Forms and L’Hospital’s Rule 
第7週
10/26  [4.5] Summary of Curve Sketching [4.6] Graphing with Calculus and Calculators [4.7] Optimization Problems [4.8] Newton’s Method(※)[4.9] Antiderivatives [5.1] Areas and Distances 
第8週
11/02  [5.2] The Definite Integral [5.3] The Fundamental Theorem of Calculus [5.4] Indefinite Integrals and the Net Change Theorem [5.5] The Substitution Rule 
第9週
11/09  [6.1] Areas between Curves [6.2] Volumes 
第10週
11/16  [6.3] Volumes by Cylindrical Shells [6.4] Work(※)[6.5] Average Value of a Function [7.1] Integration by Parts 
第11週
11/23  [7.2] Trigonometric Integrals [7.3] Trigonometric Substitution 
第12週
11/30  [7.4] Integration of Rational Functions by Partial Fractions [7.5] Strategy for Integration [7.6] Integration Using Tables and Computer Algebra Systems [7.7] Approximate Integration 
第13週
12/07  [7.8] Improper Integrals 
第14週
12/14  [8.1] Arc Length [8.2] Area of a Surface of Revolution [9.1] Modeling with Differential Equations [9.2] Direction Fields and Euler’s Method 
第15週
12/21  [9.3] Separable Equations [9.4] Models for Population Growth [9.5] Linear Equations [9.6] Predator-Prey Systems (※) 
第16週
12/28  [10.1] Curves Defined by Parametric Equations [10.2] Calculus with Parametric Curves 
第17週
01/04  [10.3] Polar Coordinates [10.4] Areas and Lengths in Polar Coordinates