課程名稱 |
微積分甲上 CALCULUS (GENERAL MATHEMATICS) (A)(1) |
開課學期 |
98-1 |
授課對象 |
資訊管理學系 |
授課教師 |
蔡雅如 |
課號 |
MATH1201 |
課程識別碼 |
201 101A1 |
班次 |
04 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) |
上課地點 |
新505新304新304 |
備註 |
統一教學.大二以上限20人.一9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/981calculusA04 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
透過課堂講論及實習課演練,學習一維函數的微積分觀念與演算。 |
課程目標 |
上完本課程後,學生能夠熟悉極限的觀念、並將之應用在微分的求導及積分的運算上。學生也會學到各式的微分與積分技巧,並熟悉微分積分的應用。 |
課程要求 |
學生必須上課並出席習題課。每週會勾選習題,學生需練習並繳交這些習題。 |
預期每週課後學習時數 |
|
Office Hours |
每週五 15:10~16:10 |
參考書目 |
James Stewart, Calculus Early Transcendentals, 6th edition. |
指定閱讀 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
平時成績 |
20% |
評分細項請看公佈欄 |
2. |
期末考 |
40% |
微甲01-05班統一命題 |
3. |
期中考 |
40% |
微甲01-05班統一命題 |
|
週次 |
日期 |
單元主題 |
第1週 |
9/14,9/16,9/18 |
[1.5] Exponential Functions
[1.6] Inverse Functions and Logarithms
[2.1] The Tangent and Velocity Problems
[2.2] The Limit of a Function |
第2週 |
9/21,9/23,9/25 |
[2.3] Calculating Limits Using the Limit Laws
[2.4] The Precise Definition of a Limit
[2.5] Continuity
[2.6] Limits at Infinity; Horizontal Asymptotes
[2.7] Derivatives and Rates of Change |
第3週 |
9/28,9/30,10/02 |
[2.8] The Derivative as a Function
[3.1] Derivatives of Polynomials and Exponential Functions
[3.2] The Product and Quotient Rules
[3.3] Derivatives of Trigonometric Functions |
第4週 |
10/05,10/07,10/09 |
[3.4] The Chain Rule
[3.5] Implicit Differentiation
[3.6] Derivatives of Logarithmic Functions
[3.7] Rates of Change in the Natural and Social Sciences(※)
[3.8] Exponential Growth and Decay |
第5週 |
10/12,10/14,10/16 |
[3.9] Related Rates
[3.10] Linear Approximations and Differentials
[3.11] Hyperbolic Functions(※)
[4.1] Maximum and Minimum Values
[4.2] The Mean Value Theorem |
第6週 |
10/19,10/21,10/23 |
Quiz 1
[4.3] How Derivatives Affect the Shape of a Graph
[4.4] Indeterminate Forms and L’Hospital’s Rule
緩衝時間 |
第7週 |
10/26,10/28,10/30 |
[4.5] Summary of Curve Sketching
[4.6] Graphing with Calculus and Calculators
[4.7] Optimization Problems
[4.8] Newton’s Method(※)
[4.9] Antiderivatives
[5.1] Areas and Distances |
第8週 |
11/02,11/04,11/06 |
[5.2] The Definite Integral
[5.3] The Fundamental Theorem of Calculus
[5.4] Indefinite Integrals and the Net Change Theorem
[5.5] The Substitution Rule |
第9週 |
11/09,11/11,11/13 |
Quiz 2
[6.1] Areas between Curves
[6.2] Volumes
緩衝時間停課 |
第10週 |
11/16,11/18,11/20 |
[6.3] Volumes by Cylindrical Shells
[6.4] Work(※)
[6.5] Average Value of a Function
[7.1] Integration by Parts |
第11週 |
11/23,11/25,11/27 |
[7.2] Trigonometric Integrals
[7.3] Trigonometric Substitution |
第12週 |
11/30,12/02,12/04 |
[7.4] Integration of Rational Functions by Partial Fractions
[7.5] Strategy for Integration
[7.6] Integration Using Tables and Computer Algebra Systems
[7.7] Approximate Integration |
第13週 |
12/07,12/09,12/11 |
[7.8] Improper Integrals
緩衝時間 |
第14週 |
12/14,12/16,12/18 |
Quiz 3
[8.1] Arc Length
[8.2] Area of a Surface of Revolution
[9.1] Modeling with Differential Equations
[9.2] Direction Fields and Euler’s Method |
第15週 |
12/21,12/23,12/25 |
[9.3] Separable Equations
[9.4] Models for Population Growth
[9.5] Linear Equations
[9.6] Predator-Prey Systems (※) |
第16週 |
12/28,12/30,1/01 |
[10.1] Curves Defined by Parametric Equations
[10.2] Calculus with Parametric Curves
1/1(五) 元旦放假 |
第17週 |
1/04,1/06,1/08 |
Quiz 4
[10.3] Polar Coordinates
[10.4] Areas and Lengths in Polar Coordinates
緩衝時間 |
|