課程資訊
課程名稱
微積分甲上
CALCULUS (GENERAL MATHEMATICS) (A)(1) 
開課學期
96-1 
授課對象
機械工程學系  
授課教師
朱樺 
課號
MATH1201 
課程識別碼
201 101A1 
班次
08 
學分
全/半年
全年 
必/選修
必修 
上課時間
星期一5(12:20~13:10)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) 
上課地點
新102新102新102 
備註
統一教學,限機械、材料等系學生修習
限本系所學生(含輔系、雙修生)
總人數上限:230人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/961Calculus 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

單變數微積分 

課程目標
(1) Limits and Continuity。
(2) Derivatives with Applications。
(3) Integration with Applications。
(4) Transcendental Functions。
(5) Integration Techniques and Improper Integrals。
(6) First rder Linear Differential Equation。
(7) Area and Lengths in Polar Coordinates 
課程要求
 
Office Hours
另約時間 
參考書目
Thomas' Calculus Early Transcendentals, 11th edition by Weir, Hass and Giordano 
指定閱讀
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
期中考 
40% 
 
2. 
期末考 
40% 
 
3. 
隨堂測驗 
20% 
 
 
課程進度
週次
日期
單元主題
第1週
9/17,9/19,9/21  1.5 Exponential Functions ; 1.6 Inverse Functions and Logarithms ; 2.1 Rates of Change and Limits ; 2.2 Calculating Limits Using the Limit Laws 
第2週
9/24,9/26,9/28  2.3 The Precise Definition of a Limit ; 2.4 One-Sided Limits and Limits at Infinity 
第3週
10/01,10/03,10/05  2.5 Infinite Limits and Vertical Asymptotes ; 2.6 Continuity ; 2.7 Tangents and Derivatives ; 3.1 The Derivative as a Function 
第4週
10/08,10/10,10/12  3.2 Differentiation Rules for Polynomials, Exponentials, Products, and Quotients ; 3.3 The Derivative as a Rate of Change 
第5週
10/15,10/17,10/19  3.4 Derivatives of Trigonometric Functions ; 3.5 The Chain Rule and Parametric Equations ; 3.6 Implicit Differentiation ; 3.7 Derivatives of Inverse Functions and Logarithms 
第6週
10/22,10/24,10/26  3.8 Inverse Trigonometric Functions ; 3.9 Related Rates ; 3.10 Linearization and Differentials ; 4.1 Extreme Values of Functions ; 4.2 The Mean Value Theorem 
第7週
10/29,10/31,11/02  4.3 Monotonic Functions and the First Derivative Test ; 4.4 Concavity and Curve Sketching ; 4.5 Applied Optimization Problems 
第8週
11/05,11/07,11/09  4.6 Indeterminate Forms and L' Hopital's Rule ; 4.7 Newton's Method ; 4.8 Antiderivatives 
第9週
11/12,11/14,11/16  5.1 Estimating with Finite Sums ; 5.2 Sigma Notation and Limits of Finite Sums 
第10週
11/19,11/21,11/23  5.3 The Definite Integral ; 5.4 The Fundamental Theorem of Calculus ; 5.5 Indefinite Integrals and the Substitution Rule ; 5.6 Substitution and Area Between Curves ; 
第11週
11/26,11/28,11/30  6.1 Volumes by Slicing and Rotation About an Axis ; 6.2 Volumes by Cylindrical Shells ; 6.3 Lengths of Plane Curves ; 6.4 Moments and Centers of Mass ; 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 
第12週
12/03,12/05,12/07  7.1 The Logarithm Defined as an Integral ; 7.2 Exponential Growth and Decay ; 7.3 Relative Rates of Growth ; 7.4 Hyperbolic Functions 
第13週
12/10,12/12,12/14  8.1 Basic Integration Formulas ; 8.2 Integration by Parts ; 8.3 Integration of Rational Functions by Partial Frations 
第14週
12/17,12/19,12/21  8.4 Trigonometirc Integrals ; 8.5 Trigonometirc Substitutions ; 8.7 Numerical Integration 
第15週
12/24,12/26,12/28  8.8 Improper Integrals ; 9.1 Slope Fields and Separable Differential Equations ; 9.2 First-Order Linear Differential Equations ; 9.5 Applications of First-Order Differential Equations 
第16週
12/31,1/02,1/04  10.4 Conics and Parametric Equations;The Cycloid ; 10.5 Polar Coordinates 
第17週
1/07,1/09,1/11  10.6 Graphing in Polar Coordinates ; 10.7 Areas and Lengths in Polar Coordinates