課程資訊
 課程名稱 微積分甲下Calculus (general Mathematics) (a)(2) 開課學期 103-2 授課對象 材料科學與工程學系 授課教師 朱樺 課號 MATH1202 課程識別碼 201 101A2 班次 01 學分 4 全/半年 全年 必/選修 必修 上課時間 星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) 上課地點 新102新102新102 備註 統一教學.大二以上限20人.一9為實習課.限本系所學生(含輔系、雙修生)總人數上限：130人 Ceiba 課程網頁 http://ceiba.ntu.edu.tw/1032MATH1202_01 課程簡介影片 核心能力關聯 核心能力與課程規劃關聯圖 課程大綱 為確保您我的權利,請尊重智慧財產權及不得非法影印 課程概述 11. Infinite Sequences and Series 12. Vectors and the Geometry of Space 13. Vector Functions 14. Partial Derivatives 15. Multiple Integrals 16. Vector Calculus 17.Second-Order Differential Equations 課程目標 After completing this course, students should be well versed in the mathematical language needed for applying the concepts of calculus to numerous applications in science and engineering. They should also be well prepared for courses in differential equations, linear algebra, or advanced calculus. 課程要求 其它請上微積分統一教學網查詢：http://www.math.ntu.edu.tw/~cala992/ 預期每週課後學習時數 Office Hours 參考書目 James Stewart, Calculus Early Transcendentals, 6th edition. 指定閱讀 待補 評量方式(僅供參考)
 課程進度
 週次 日期 單元主題 第1週 2/25,2/27 [11.1] Sequences
[11.2] Series

[11.4] The Comparison Tests
[11.5] Alternating Series
[11.6] Absolute Convergence and the Ratio and Root Tests

[11.8] Power Series
[11.9] Representations of Functions as Power Series

[11.10] Taylor and Maclaurin Series
[11.11] Applications of Taylor Polynomials

[13.1] Vector Functions and Space Curves
[13.2] Derivatives and Integrals of Vector Functions
[13.3] Arc Length and Curvature

4/1(三) 溫書假
4/3(五) 溫書假

[14.2] Limits and Continuity
[14.3] Partial Derivatives
[14.4] Tangent Planes and Linear Approximations
[14.5] The Chain Rule

[14.6] Directional Derivatives and the Gradient Vector
[14.7] Maximum and Minimum Values

[15.2] Iterated Integrals
[15.3] Double Integrals over General Regions

[15.5] Applications of Double Integrals
[15.6] Surface Area
[15.7] Triple Integrals

[15.8] Triple Integrals in Cylindrical Coordinates
[15.9] Triple Integrals in Spherical Coordinates
[15.10] Change of Variables in Multiple Integrals

[16.2] Line Integrals
[16.3] The Fundamental Theorem for Line Integrals

[16.4] Green's Theorem
[16.5] Curl and Divergence
[16.6] Parametric Surfaces and Their Areas

[16.8] Stokes' Theorem

[16.9] The Divergence Theorem
[16.10] Summary
[17.1] Second-Order Linear Equations
[17.2] Nonhomogeneous Linear Equations