課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
101-2 |
授課對象 |
材料科學與工程學系 |
授課教師 |
容志輝 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
02 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) |
上課地點 |
新203新203新203 |
備註 |
統一教學.大二以上限20人.一9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:130人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1012calculus02 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
章節 週次 課程進度
9. Sequences, Series, and Power Series 第一週
(2/20~2/24) 9.1 Sequences and Convergence
9.2 Infinite Series
9.3 Convergence Tests for Positive Series
9.4 Absolute and Conditional Convergence
第二週
(2/27~3/2) 9.5 Power Series
9.6 Taylor and Maclaurin Series
9.7 Applications of Taylor and Maclaurin Series
9.8 The Binomial Theorem and Binomial Series
10. Vectors and Coordinate Geometry in 3-Space 第三週
(3/5~3/9) 10.3 The Cross Product in 3-Space
10.5 Quadric Surfaces
10.6 Cylindrical and Spherical Coordinates
10.7 A Little Linear Algebra(※)
11. Vector Functions and Curves 第四週
(3/12~3/16) 緩衝時間
11.1 Vector Functions of One Variable
11.3 Curves and Parametrizations
第五週
(3/19~3/23) 11.4 Curvature, Torsion, and the Frenet Frame
12. Partial Differentiation 12.1 Functions of Several Variables
12.2 Limits and Continuity
第六週
(3/26~3/30) 12.3 Partial Derivatives
12.4 Higher-Order Derivatives
12.5 The Chain Rule
12.6 Linear Approximations, Differentiability, and Differentials
第七週
(4/2~4/6) 4/3(二)?4/6(五)放假
第八週
(4/9~4/13) 12.7 Fradients and Directional Derivatives
12.8 Implicit Functions
13. Applications of Partial Derivatives 13.1 Extreme Values
13.2 Extreme Values of Functions Defined on Restricted Domains
第九週
(4/16~4/20) 13.3 Lagrange Multipliers
13.4 The Method of Least Squares(※)
緩衝時間
期中考4/22(日)09:00?11:30 考試範圍:9.1?13.4(英文命題)
14. Multiple Integration 第十週
(4/23~4/27) 14.1 Double Integrals
14.2 Iteration of Double Integrals in Cartesian Coordinates
14.3 Improper Integrals and a Mean-Value Theorem
14.4 Double Integrals in Polar Coordinates
第十一週
(4/30~5/4) 14.5 Triple Integrals
14.6 Change of Variables in Triple Integrals
14.7 Applications of Multiple Integrals
15. Vector Fields 第十二週
(5/7~5/11) 緩衝時間
15.1 Vector and Scalar Fields
15.2 Conservative Fields
第十三週
(5/14~5/18) 15.3 Line Integrals
15.4 Line Integrals of Vector Fields
15.5 Surfaces and Surface Integrals
15.6 Oriented Surfaces and Flux Integrals
16. Vector Calculus 第十四週
(5/21~5/25) 緩衝時間
16.1 Gradient, Divergence, and Curl
16.2 Some Identities Involving Grad, Div, and Curl
第十五週
(5/28~6/1) 16.3 Green's Theorem in the Plane
16.4 The Divergence Theorem in 3-Space
16.5 Stokes's Theorem
16.7 Orthogonal Curvilinear Coordinates(※)
17. Ordinary Differential Equations 第十六週
(6/4~6/8) 緩衝時間
17.1 Classifying Differential Equations
17.2 Solving First-Order Equations
17.4 Differential Equations of Second Order
第十七週
(6/11~6/15) 17.5 Linear Differential Equations with Constant Coefficients
17.6 Nonhomogeneous Linear Equations
緩衝時間
期末考6/17(日)09:00?11:30 考試範圍:14.1?17.6(英文命題)
說明:(※)此符號標示之課程,可由任課教師自行決定是否為教學內容,不列入考試範圍中 |
課程目標 |
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions. |
課程要求 |
High School Mathematics
☆08-11班:上課時間:三78 五12 、 實習課時間:三9
12班:上課時間:二78 四56 、 實習課時間:二9
☆各班實習課分組教室:將公告於微積分甲統一教學網站公佈。
☆微積分甲統一教學網站:http://www.math.ntu.edu.tw/~mathcal/a/ 。
☆各班助教Office Hour時間:將公告於微積分甲統一教學網站公佈。
☆習題:習題繳交與否依各授課教師規定;習題解答將於公佈於微積分甲統一教學網站。
☆期中、期末考題目以英文命題。
|
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
參考書目 |
Calculus: A Complete Course seventh edition. |
指定閱讀 |
|
評量方式 (僅供參考) |
|
週次 |
日期 |
單元主題 |
第1週 |
2/18,2/20,2/22 |
Infinite Series, Positive Term Series, Alternating Series. |
第2週 |
2/25,2/27,3/01 |
Absolute and Conditional Convergence, Power Series, Taylor's Formula with Remainder, Taylor's Theorem.
|
第3週 |
3/04,3/06,3/08 |
Taylor's Series, Maclaurin's Series, Algebra of R^n Space. |
第4週 |
3/11,3/13,3/15 |
Quiz 1, Scalar Triple Product and Cross Product in R^3, Topology of R^n, Limits and Continuity for (Vector-Valued) Functions of Several Variables. |
第5週 |
3/18,3/20,3/22 |
Directional Derivatives, Partial Derivatives, Total Derivatives. |
第6週 |
3/25,3/27,3/29 |
Mean-Value Theorem, Chain Rule, Implicit Function Theorem. |
第7週 |
4/01,4/03,4/05 |
TA Time, Holiday. |
第8週 |
4/08,4/10,4/12 |
Extreme Problems, Lagrange Multipliers, Parameterized Curves |
第9週 |
4/15,4/17,4/19 |
Quiz 2, Regular Curves, Tangent Vector Fields, Arc Length, Reparameterization, Curvature, Osculating Planes, Torsion, Frenet-Serret Equations, Fundamental Theorem of Space Curves. |
第10週 |
4/22,4/24,4/26 |
Double Integral, Fubini's Theorem, Iterated Integration, Midterm(4/27). |
第11週 |
4/29,5/01,5/03 |
Double Integral for Arbitrary Bounded Regions, Intermediate Value Theorem and Mean Value Theorem for Double Integrals, Double Integrals in Polar Coordinate, 2-D Inverse Function Theorem, Change of Variables for Double Integrals. |
第12週 |
5/06,5/08,5/10 |
Riemann Integral on R^n. |
第13週 |
5/13,5/15,5/17 |
Cylindrical Coordinates, Spherical Coordinates, Potential Functions, Curve Integrals. |
第14週 |
5/20,5/22,5/24 |
Quiz 3, Curve Integrals with Respect to Arc Length, Parametric Surfaces in R^3, Surface Area. |
第15週 |
5/27,5/29,5/31 |
Surface Integrals, Green's Theorem in R^2, Del Operator,Divergence, Curl. |
第16週 |
6/03,6/05,6/07 |
Stokes' Theorem, Divergence Theorem, Laplacian, Irrotational Vector Fields. |
第17週 |
6/10,6/12,6/14 |
Quiz 4, Solenoidal Vector Fields. |
第18週 |
6/16 |
Final Examination (13:30 - 16:00). |
|