課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
99-2 |
授課對象 |
資訊管理學系 |
授課教師 |
蔡雅如 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
04 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) |
上課地點 |
新202新304新304 |
備註 |
統一教學.大二以上限20人.一9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/992calculusA04 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
11. Infinite Sequences and Series
13. Vector Functions
14. Partial Derivatives
15. Multiple Integrals
16. Vector Calculus (which includes Green's Theorem, Stokes' Theorem and the Divergence Theorem) |
課程目標 |
After completing this course, students should be well versed in the mathematical language needed for applying the concepts of calculus to numerous applications in science and engineering. They should also be well prepared for courses in differential equations, linear algebra, or advanced calculus. |
課程要求 |
High School Mathematics |
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
參考書目 |
James Stewart, Calculus Early Transcendentals, 6th edition. |
指定閱讀 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
平時成績 |
20% |
作業, 小考〈四次取三次最好成績計算〉, 習題課參與度. |
2. |
期末考 |
40% |
6/19(Sat) 13:30-16:00 |
3. |
期中考 |
40% |
4/24(Sat) 13:30-16:00 |
|
週次 |
日期 |
單元主題 |
第1週 |
2/21,2/23,2/25 |
11.1 Sequences
11.2 Series
11.3 The integral Test and Estimates of Sums |
第2週 |
2/28,3/02,3/04 |
11.4 The Comparison Tests
11.5 Alternating Series
11.6 Absolute Convergence and the Ratio and Root Tests |
第3週 |
3/07,3/09,3/11 |
11.7 Strategy for Testing Series
11.8 Power Series
11.9 Representations of Functions as Power Series |
第4週 |
3/14,3/16,3/18 |
11.10 Taylor and Maclaurin Series
11.11 Applications of Taylor Polynomials
緩衝時間 |
第5週 |
3/21,3/23,3/25 |
Quiz 1
13.1 Vector Functions and Space Curves
13.2 Derivatives and Integrals of Vector Functions
13.3 Arc Length and Curvature
13.4 Motion in Space: Velocity and Acceleration(*) |
第6週 |
3/28,3/30,4/01 |
12.6 Cylinders and Quadric Surfaces
14.1 Functions of Several Variables
14.2 Limits and Continuity
14.3 Partial Derivatives |
第7週 |
4/04,4/06,4/08 |
14.4 Tangent Planes and Linear Approximations
14.5 The Chain Rule |
第8週 |
4/11,4/13,4/15 |
14.6 Directional Derivatives and the Gradient Vector
14.7 Maximum and Minimum Values |
第9週 |
4/18,4/20,4/22 |
Quiz 2
14.8 Lagarange Multipliers
緩衝時間 |
第10週 |
4/25,4/27,4/29 |
15.1 Double Integrals over Rectangles
15.2 Iterated Integrals
15.3 Double over General Regions |
第11週 |
5/02,5/04,5/06 |
15.4 Double Integrals in Polar Coordinates
15.5 Applications of Double Integrals
15.6 Triple Integrals |
第12週 |
5/09,5/11,5/13 |
15.7 Triple Integrals in Cylindrical Coordinates
15.8 Triple Integrals in Spherical Coordinates
15.9 Change of Variables in Multiple Integrals |
第13週 |
5/16,5/18,5/20 |
Quiz 3
緩衝時間
16.1 Vector Fields
16.2 LIne Integrals |
第14週 |
5/23,5/25,5/27 |
16.3 The Fundamental Theorem for Line Integrals
16.4 Green's Theorem |
第15週 |
5/30,6/01,6/03 |
16.5 Curl and Divergence
16.6 Parametric Surfaces and Their Areas
16.7 Surface Integrals |
第16週 |
6/06,6/08,6/10 |
16.8 Stokes' Theorem
16.9 The Divergence Theorem
16.10 Summary |
第17週 |
6/13,6/15,6/17 |
Quiz 4
17.1 Second-Order Linear Equations
17.2 Nonhomogeneous Linear Equations |
|