課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
99-2 |
授課對象 |
資訊管理學系 |
授課教師 |
薛克民 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
05 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期一9(16:30~17:20)星期三5,6(12:20~14:10)星期五5,6(12:20~14:10) |
上課地點 |
新203新203新203 |
備註 |
統一教學.大二以上限20人.一9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/992math1202_5 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
In this semester, the topics to be covered are
(1) Infinite sequences & series
(2) Vectors, vector functions, & geometry of space
(3) Partial derivatives
(4) Multiple integrals
(5) Vector calculus
|
課程目標 |
Discuss basic mathematical techniques in calculus that are fundamental
in science and engineering |
課程要求 |
(1) Gain reasonably good knowledge for the mathematical topics tought in the class
(2) Your score for the course will be determined totally based on (i) quizs (20 %), (ii) midterm exam. (40 %) and (iii) final exam. (40 %). There will be no makeup exam. whatsoever. |
預期每週課後學習時數 |
|
Office Hours |
每週四 11:00~12:00 |
參考書目 |
James Stewart, Calculus, 6 Edition |
指定閱讀 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
期中考 |
40% |
|
2. |
期末考 |
40% |
|
3. |
隨堂測驗 |
20% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/23,2/25 |
11.1 Sequeces<br>
11.2 Series<br>
11.3 The Integral Test and Estimates of Sums |
第2週 |
3/02,3/04 |
11.4 The Comparison Test<br>
11.5 Alternating Series<br>
11.6 Absolute Convergence and the Ratio and Root Tests |
第3週 |
3/09,3/11 |
<font color=#ff0000>Quiz 1: 11.1~11.7</font><br>
11.7 Strategy for Testing Series<br>
11.8 Power Series<br>
11.9 Representations of Functions as Power Series |
第4週 |
3/16,3/18 |
11.10 Taylor and Maclaurin Series<br>
11.11 Applications of Taylor Polynomials |
第5週 |
3/23,3/25 |
<font color=#ff0000>Quiz 2: 11.8~11.11</font><br>
13.1 Vector Functions and Space Curves<br>
13.2 Derivatives and Integrals of Vector Functions<br>
13.3 Arc Length and Curvature<br>
13.4 Motion in Space: Velocity and Acceleration(*) |
第6週 |
3/30,4/01 |
12.6 Cylinders and Quadric Surfaces<br>
14.1 Functions of Several Variables<br>
14.2 Limits and Continuity<br>
14.3 Partial Derivatives |
第7週 |
4/08 |
14.4 Tangent Planes and Linear Approximations<br>
14.5 The Chain Rule |
第8週 |
4/13,4/15 |
<font color=#ff0000>Quiz 3: 13.1~13.4, 12.6, 14.1~14.6</font><br>
14.6 Directional Derivatives and the Gradient Vector<br>
14.7 Maximum and Minimum Values |
第9週 |
4/20,4/22 |
14.8 Lagrange Multipliers<br>
<font color=#ff0000><marquee>
期中考4/23(六)13:30∼16:00 考試範圍:11.1∼14.8(英文命題)</marquee></font> |
第10週 |
4/27,4/29 |
15.1 Double Integrals over Rectangles<br>
15.2 Iterated Integrals<br>
15.3 Double Integrals over General Regions |
第11週 |
5/04,5/06 |
15.4 Double Integrals in Polar Coordinates<br>
15.5 Applications of Double Integrals<br>
15.6 Triple Integrals |
第12週 |
5/11,5/13 |
<font color=#ff0000>Quiz 4:15.1~15.6</font><br>
15.7 Triple Integrals in Cylindrical Coordinates<br>
15.8 Triple Integrals in Spherical Coordinates<br>
15.9 Change of Variables in Multiple Integrals |
第13週 |
5/18,5/20 |
16.1 Vector Fields<br>
16.2 Line Integrals |
第14週 |
5/25,5/27 |
<font color=#ff0000>Quiz 5:15.7~16.3</font><br>16.3 The Fundamental Theorem for Line Integrals<br>
16.4 Green's Theorem |
第15週 |
6/01,6/03 |
16.5 Curl and Divergence<br>
16.6 Parametric Surfaces and Their Areas<br>
16.7 Surface Integrals |
第16週 |
6/08,6/10 |
16.8 Stokes' Theorem<br>
16.9 The Divergence Theorem<br>
16.10 Summary |
第17週 |
6/15,6/17 |
<font color=#ff0000>Quiz 6:16.4~16.9</font><br>
17.1 Second-Order Linear Equations<br>
17.2 Nonhomogeneous Linear Equations
<br>
<marquee>
<font color=#ff0000>
期末考6/18(六)13:30∼16:00 考試範圍:15.1∼17.2(英文命題)</font></marquee> |
|