課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
105-2 |
授課對象 |
大氣科學系 |
授課教師 |
賴青瑞 |
課號 |
MATH1202 |
課程識別碼 |
201E101A2 |
班次 |
06 |
學分 |
4.0 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期三8,9,10(15:30~18:20)星期五1,2(8:10~10:00) |
上課地點 |
新202新202 |
備註 |
本課程以英語授課。統一教學.大二以上限20人.三10為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1052MATH1202_06 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
We first summarize what we have learned in the last semester to find the Taylor expansion of a given function. This has tremendous applications in all kinds of engineering. The single variable calculus ends here.
Then we move on to calculus in severable variables. The approach is similar to what we have done in the last semester: limit, derivative, optimization problem by using derivatives (Lagrange multipliers), integrals, then to ``Fundamental Theorem of Calculus.'' The formulas of FTC in two and three variables in the format of Green-Stokes and Divergence Theorems is technical to explain and learn. However, it all says that the net change of a vector function in the interior is exactly the total change (flux) on the boundary, when interpreted in a suitable sense.
|
課程目標 |
1. Taylor expansion
2. Calculus in two and three variables: limit and derivative
3. Optimization problem: Lagrange multipliers
4. Integrals in two and three variables
5. Green-Stokes and divergence theorems. |
課程要求 |
Single variable calculus: limit, derivative, integral. Idea of linear approximation. |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
James Stewart: Calculus, Early Transcendentals, 8th Edition, International Metric
Version, 2016.
Fritz John, Richard Courant: Introduction to Calculus and Analysis (Classics in Mathematics) 1999th Edition. (Available on http://lib.ntu.edu.tw)
|
指定閱讀 |
James Stewart: Calculus, Early Transcendentals, 8th Edition, International Metric
Version, 2016. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Homework |
10% |
|
2. |
Quiz |
20% |
|
3. |
Midterm |
35% |
|
4. |
Final |
35% |
|
|
週次 |
日期 |
單元主題 |
第7週 |
4/05,4/07 |
4/5(Wed) A day off for preparing the midterm. |
第9週 |
4/19,4/21 |
4.22(Sat) 9:00~11:30 Midterm 11.1~14.8 |
第17週 |
6/14,6/16 |
6/17(Sat) 13:30~16:00 Final 15.1~16.10 |
|