課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
101-2 |
授課對象 |
機械工程學系 |
授課教師 |
陳厚伊 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
07 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期三7,8,9(14:20~17:20)星期五1,2(8:10~10:00) |
上課地點 |
新304新304 |
備註 |
統一教學.大二以上限20人.三9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1012MATH1202_07 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
☆上課時間:07-10 班 三 78 五 12 、 實習課時間:三 9。
11 班 二 78 四 56 、 實習課時間:二 9。
☆各班實習課分組教室:將公告於微積分甲統一教學網站公佈。
☆微積分甲統一教學網站:http://www.math.ntu.edu.tw/~mathcal/a/ 。
☆各班助教 Office Hour 時間:將公告於微積分甲統一教學網站公佈。
☆習題:習題繳交與否依各授課教師規定;習題解答將於公佈於微積分甲統一教學網站。
☆期中、期末考題目以英文命題。 |
課程目標 |
Reference material ( textbook(s) ):
Calculus: One And Several Variables, tenth edition. |
課程要求 |
Course prerequisite:
High School Mathematics |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Reference material ( textbook(s) ):
Calculus: One And Several Variables, tenth edition. |
指定閱讀 |
Reference material ( textbook(s) ):
Calculus: One And Several Variables, tenth edition. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
平時成績 |
20% |
|
2. |
期中考 |
40% |
|
3. |
期末考 |
40% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/20,2/22 |
[12.1] Sigma Notation.<br>
[12.2] Infinite Series.<br>
[12.3] The Integral Test; Basic Comparison, Limit Comparison.<br>
[12.4] The Root Test; The Ratio Test.<br>
[12.5] Absolute and Conditional Convergence; Alternating Series. |
第2週 |
2/27,3/01 |
[12.6] Taylor Polynomials in x; Taylor Series in x.<br>
[12.7] Taylor Polynomials and Taylor Series in x–a.<br>
[12.8] Power Series.<br>
[12.9] Differentiation and Integration of Power Series. |
第3週 |
3/06,3/08 |
[13.3] The Dot Product.<br>
[13.4] The Cross Product.<br>
[13.5] Lines.<br>
[13.6] Planes.<br>
[13.7] Higher Dimensions. |
第4週 |
3/13,3/15 |
[14.1] Limit, Continuity, Vector Derivative.<br>
[14.2] The Rules of Differentiation.<br>
[14.3] Curves.<br>
[14.4] Arc Length. |
第5週 |
3/20,3/22 |
[14.5] Curvilinear Motion; Curvature.<br>
[14.6] Vector Calculus in Mechanics. |
第6週 |
3/27,3/29 |
[15.1] Elementary Examples.<br>
[15.3] Graphs; Level Curves and Level Surfaces.<br>
[15.4] Partial Derivatives.<br>
[15.5] Open Sets and Closed Sets.<br>
[15.6] Limits and Continuity; Equality of Mixed Partials. |
第7週 |
4/03,4/05 |
Holiday |
第8週 |
4/10,4/12 |
[16.1] Differentiability and Gradient.<br>
[16.2] Gradients and Directional Derivatives.<br>
[16.3] The Mean-Value Theorem; the Chain Rule. |
第9週 |
4/17,4/19 |
[16.4] The Gradient as a Normal; Tangent Lines and Tangent Planes.<br>
[16.5] Local Extreme Values.<br>
[16.6] Absolute Extreme Values.<br>
[16.7] Maxima and Minima with Side Conditions. |
第10週 |
4/24,4/26 |
[16.8] Differentials.<br>
[16.9] Reconstructing a Function from Its Gradient.<br>
4/27(六) 13:30 ~ 16:00期中考 考試範圍 12.1~16.3 (英文命題). |
第11週 |
5/01,5/03 |
[17.1] Multiple-Sigma Notation.<br>
[17.2] Double Integrals.<br>
[17.3] The Evaluation of Double Integrals by Repeated Integrals. |
第12週 |
5/08,5/10 |
[17.4] The Double Integral as the Limit or Riemann Sums; Polar Coordinates.<br>
[17.5] Further Applications of Double Integration.<br>
[17.6] Triple Integrals.<br>
[17.7] Reduction to Repeated Integrals. |
第13週 |
5/15,5/17 |
[17.8] Cylindrical Coordinates.<br>
[17.9] The Triple Integral as the Limit of Riemann Sums; Spherical Coordinates.<br>
[17.10] Jacobians; Changing Variables in Multiple Integration.<br>
[18.1] Line Integrals. |
第14週 |
5/22,5/24 |
[18.2] The Fundamental Theorem for Line Integrals.<br>
[18.3] Work-Energy Formula; Conservation of Mechanical Energy. |
第15週 |
5/29,5/31 |
[18.4] Another Notation for Line Integrals; Line Integrals with Respect to Arc Length.<br>
[18.5] Green’s Theorem.<br>
[18.6] Parametrized Surfaces; Surface Area. |
第16週 |
6/05,6/07 |
[18.7] Surface Integrals.<br>
[18.8] The Vector Differential Operator.<br>
[18.9] The Divergence Theorem.<br>
[18.10] Stokes’s Theorem. |
第17週 |
6/12,6/14 |
Holiday<br>
Buffer time <br>
暫定6/15(六) 09:00~11:30期末考 考試範圍 16.4~18.10 (英文命題). |
|