課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
100-2 |
授課對象 |
化學系 |
授課教師 |
容志輝 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
11 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期三7,8,9(14:20~17:20)星期五1,2(8:10~10:00) |
上課地點 |
共203共203 |
備註 |
統一教學.大二以上限20人.三9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1002calculus_a_2_11 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
章節 週次 課程進度
9. Sequences, Series, and Power Series 第一週
(2/20~2/24) 9.1 Sequences and Convergence
9.2 Infinite Series
9.3 Convergence Tests for Positive Series
9.4 Absolute and Conditional Convergence
第二週
(2/27~3/2) 9.5 Power Series
9.6 Taylor and Maclaurin Series
9.7 Applications of Taylor and Maclaurin Series
9.8 The Binomial Theorem and Binomial Series
10. Vectors and Coordinate Geometry in 3-Space 第三週
(3/5~3/9) 10.3 The Cross Product in 3-Space
10.5 Quadric Surfaces
10.6 Cylindrical and Spherical Coordinates
10.7 A Little Linear Algebra(※)
11. Vector Functions and Curves 第四週
(3/12~3/16) 緩衝時間
11.1 Vector Functions of One Variable
11.3 Curves and Parametrizations
第五週
(3/19~3/23) 11.4 Curvature, Torsion, and the Frenet Frame
12. Partial Differentiation 12.1 Functions of Several Variables
12.2 Limits and Continuity
第六週
(3/26~3/30) 12.3 Partial Derivatives
12.4 Higher-Order Derivatives
12.5 The Chain Rule
12.6 Linear Approximations, Differentiability, and Differentials
第七週
(4/2~4/6) 4/3(二)∼4/6(五)放假
第八週
(4/9~4/13) 12.7 Fradients and Directional Derivatives
12.8 Implicit Functions
13. Applications of Partial Derivatives 13.1 Extreme Values
13.2 Extreme Values of Functions Defined on Restricted Domains
第九週
(4/16~4/20) 13.3 Lagrange Multipliers
13.4 The Method of Least Squares(※)
緩衝時間
期中考4/22(日)09:00∼11:30 考試範圍:9.1∼13.4(英文命題)
14. Multiple Integration 第十週
(4/23~4/27) 14.1 Double Integrals
14.2 Iteration of Double Integrals in Cartesian Coordinates
14.3 Improper Integrals and a Mean-Value Theorem
14.4 Double Integrals in Polar Coordinates
第十一週
(4/30~5/4) 14.5 Triple Integrals
14.6 Change of Variables in Triple Integrals
14.7 Applications of Multiple Integrals
15. Vector Fields 第十二週
(5/7~5/11) 緩衝時間
15.1 Vector and Scalar Fields
15.2 Conservative Fields
第十三週
(5/14~5/18) 15.3 Line Integrals
15.4 Line Integrals of Vector Fields
15.5 Surfaces and Surface Integrals
15.6 Oriented Surfaces and Flux Integrals
16. Vector Calculus 第十四週
(5/21~5/25) 緩衝時間
16.1 Gradient, Divergence, and Curl
16.2 Some Identities Involving Grad, Div, and Curl
第十五週
(5/28~6/1) 16.3 Green's Theorem in the Plane
16.4 The Divergence Theorem in 3-Space
16.5 Stokes's Theorem
16.7 Orthogonal Curvilinear Coordinates(※)
17. Ordinary Differential Equations 第十六週
(6/4~6/8) 緩衝時間
17.1 Classifying Differential Equations
17.2 Solving First-Order Equations
17.4 Differential Equations of Second Order
第十七週
(6/11~6/15) 17.5 Linear Differential Equations with Constant Coefficients
17.6 Nonhomogeneous Linear Equations
緩衝時間
期末考6/17(日)09:00∼11:30 考試範圍:14.1∼17.6(英文命題)
說明:(※)此符號標示之課程,可由任課教師自行決定是否為教學內容,不列入考試範圍中 |
課程目標 |
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions. |
課程要求 |
High School Mathematics
☆08-11班:上課時間:三78 五12 、 實習課時間:三9
12班:上課時間:二78 四56 、 實習課時間:二9
☆各班實習課分組教室:將公告於微積分甲統一教學網站公佈。
☆微積分甲統一教學網站:http://www.math.ntu.edu.tw/~mathcal/a/ 。
☆各班助教Office Hour時間:將公告於微積分甲統一教學網站公佈。
☆習題:習題繳交與否依各授課教師規定;習題解答將於公佈於微積分甲統一教學網站。
☆期中、期末考題目以英文命題。
|
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Calculus: A Complete Course seventh edition. |
指定閱讀 |
Calculus: A Complete Course seventh edition. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
期中 |
40% |
|
2. |
期末 |
40% |
|
3. |
作業 |
5% |
|
4. |
小考 |
15% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/22,2/24 |
Sequences and Infinite Series. |
第2週 |
2/29,3/02 |
Positive Term Series, Alternating Series, and Power Series. |
第3週 |
3/07,3/09 |
Sequences of Functions, Taylor Series, Binomial Series. |
第4週 |
3/14,3/16 |
Algebra of R^n Space, Quadric Surfaces, Cylindrical and Spherical Coordinates. |
第5週 |
3/21,3/23 |
Determinants, Cross Product in R^3, Topology of R^n, Quadratic Forms, Eigenvalues, Linear Transformation and Representation Matrix, and Limits of Vector-Valued Functions of Several Variables. |
第6週 |
3/28,3/30 |
Continuity, Partial Derivatives, Directional Derivatives, Total Derivatives, and Gradients. |
第7週 |
4/04,4/06 |
No Class. (Spring Vacation) |
第8週 |
4/11,4/13 |
The Chain Rule, Equality of Mixed Partial Derivatives, Implicit Function Theorem, Extreme Problems and Lagrange Multipliers. |
第9週 |
4/18,4/20 |
Regular Curves, Reparameterization, Arc-Length, Curvature, Torsion and Frenet-Serret Frame. (Mid-Term Exam on 4/22) |
第10週 |
4/25,4/27 |
Riemann Integrals on R^n and Fubini's Theorem. |
第11週 |
5/02,5/04 |
Inverse Function Theorem, Taylor Theorem, Change of Variables in Multiple Integrals, Improper Integrals, and Mean-Value Theorem. |
第12週 |
5/09,5/11 |
Potential Functions and Curve Integrals. |
第13週 |
5/16,5/18 |
Surface Integrals |
第14週 |
5/23,5/25 |
Curl, Jordan Curve Theorem, Green's Theorem, and Stokes' Theorem. |
第15週 |
5/30,6/01 |
Divergence Theorem (Gauss' Theorem), and Further Properties of the Gradient, Divergence, and Curl. |
第16週 |
6/06,6/08 |
Exact Differential Equations, Integrating Factors. |
第17週 |
6/13,6/15 |
Second Order Differential Equations, Variation of Parameters. |
|