課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
101-2 |
授課對象 |
土木工程學系 |
授課教師 |
郭鴻文 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
11 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必帶 |
上課時間 |
星期二7,8,9(14:20~17:20)星期四5,6(12:20~14:10) |
上課地點 |
新203新203 |
備註 |
統一教學.二9為實習課. 限本系所學生(含輔系、雙修生) 總人數上限:130人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1012calculus_a11 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions. |
課程目標 |
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions. |
課程要求 |
High School Mathematics |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Textbook
Calculus: One And Several Variables, tenth edition. |
指定閱讀 |
|
評量方式 (僅供參考) |
|
週次 |
日期 |
單元主題 |
第1週 |
2/19,2/21 |
[12.1] Sigma Notation.
[12.2] Infinite Series.
[12.3] The Integral Test; Basic Comparison, Limit Comparison.
[12.4] The Root Test; The Ratio Test.
[12.5] Absolute and Conditional Convergence; Alternating Series. |
第2週 |
2/26,2/28 |
[12.6] Taylor Polynomials in x; Taylor Series in x.
[12.7] Taylor Polynomials and Taylor Series in x–a. |
第3週 |
3/05,3/07 |
[12.8] Power Series.
[12.9] Differentiation and Integration of Power Series.
[13.3] The Dot Product.
[13.4] The Cross Product. |
第4週 |
3/12,3/14 |
[13.5] Lines.
[13.6] Planes.
[13.7] Higher Dimensions.
[14.1] Limit, Continuity, Vector Derivative.
[14.2] The Rules of Differentiation. |
第5週 |
3/19,3/21 |
[14.3] Curves.
[14.4] Arc Length.
[14.5] Curvilinear Motion; Curvature.
[14.6] Vector Calculus in Mechanics. |
第6週 |
3/26,3/28 |
[15.1] Elementary Examples.
[15.3] Graphs; Level Curves and Level Surfaces.
[15.4] Partial Derivatives.
[15.5] Open Sets and Closed Sets.
[15.6] Limits and Continuity; Equality of Mixed Partials. |
第7週 |
4/02,4/04 |
[16.1] Differentiability and Gradient.
[16.2] Gradients and Directional Derivatives. |
第8週 |
4/09,4/11 |
[16.3] The Mean-Value Theorem; the Chain Rule.
[16.4] The Gradient as a Normal; Tangent Lines and Tangent Planes. |
第9週 |
4/16,4/18 |
[16.5] Local Extreme Values.
[16.6] Absolute Extreme Values.
[16.7] Maxima and Minima with Side Conditions. |
第10週 |
4/23,4/25 |
[16.8] Differentials.
[16.9] Reconstructing a Function from Its Gradient. |
第11週 |
4/30,5/02 |
[17.1] Multiple-Sigma Notation.
[17.2] Double Integrals.
[17.3] The Evaluation of Double Integrals by Repeated Integrals. |
第12週 |
5/07,5/09 |
[17.4] The Double Integral as the Limit or Riemann Sums; Polar Coordinates.
[17.5] Further Applications of Double Integration.
[17.6] Triple Integrals.
[17.7] Reduction to Repeated Integrals. |
第13週 |
5/14,5/16 |
[17.8] Cylindrical Coordinates.
[17.9] The Triple Integral as the Limit of Riemann Sums; Spherical Coordinates.
[17.10] Jacobians; Changing Variables in Multiple Integration. |
第14週 |
5/21,5/23 |
[18.1] Line Integrals.
[18.2] The Fundamental Theorem for Line Integrals.
[18.3] Work-Energy Formula; Conservation of Mechanical Energy. |
第15週 |
5/28,5/30 |
[18.4] Another Notation for Line Integrals; Line Integrals with Respect to Arc Length.
[18.5] Green’s Theorem. |
第16週 |
6/04,6/06 |
[18.6] Parametrized Surfaces; Surface Area.
[18.7] Surface Integrals.
[18.8] The Vector Differential Operator . |
第17週 |
6/11,6/13 |
[18.9] The Divergence Theorem.
[18.10] Stokes’s Theorem. |
|