課程名稱 |
微積分甲下 Calculus (general Mathematics) (a)(2) |
開課學期 |
99-2 |
授課對象 |
生物機電工程學系 |
授課教師 |
曾琇瑱 |
課號 |
MATH1202 |
課程識別碼 |
201 101A2 |
班次 |
15 |
學分 |
4 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期一5,6(12:20~14:10)星期五1,2(8:10~10:00) |
上課地點 |
新203新203 |
備註 |
大二以上限20人. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/992cal_15 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
1.Arc length, area of a surface of revolution and its applications
2.Modeling with differential equations and its applications
3.Curves defined by parametric equations, calculus with parametric curves, polar coordinates
4.Areas and lengths in polar coordinates
5.Sequences, series
6.Strategy for testing series, power series, representations of functions as power series
7.Taylor and Maclaurin series, applications of Taylor polynomials
8.Vector functions and space curves, derivatives and integrals of vector functions
9.Arc length and curvature, motion in space: velocity and acceleration
10.Functions of several variables
11.The chain rule, directional derivatives and the gradient vector
12.Maximum and minimum values, Lagrange multipliers
13.Double integrals over rectangles, iterated integrals, double integrals over general regions
14.Double integrals in polar coordinates, applications of double integrals
15.Line integrals
|
課程目標 |
學習微積分的基礎與計算能力 |
課程要求 |
上課,做習題,考試 |
預期每週課後學習時數 |
|
Office Hours |
另約時間 備註: 周一與周五課後 |
參考書目 |
|
指定閱讀 |
CALCULUS Early Transcendentals, by James Stewart, 6E, Thomson Books/Cole |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
小考 |
10% |
一小時測驗 |
2. |
期中考 |
30% |
|
3. |
小考 |
10% |
一小時測驗 |
4. |
考試 |
20% |
|
5. |
期末考 |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/21,2/25 |
Arc length, area of a surface of revolution and its applications
|
第2週 |
2/28,3/04 |
Modeling with differential equations and its applications
|
第3週 |
3/07,3/11 |
Curves defined by parametric equations, calculus with parametric curves, polar coordinates
|
第4週 |
3/14,3/18 |
Areas and lengths in polar coordinates
|
第5週 |
3/21,3/25 |
Sequences, series |
第6週 |
3/28,4/01 |
Strategy for testing series, power series, representations of functions as power series |
第7週 |
4/04,4/08 |
Taylor and Maclaurin series |
第8週 |
4/11,4/15 |
期中考 |
第9週 |
4/18,4/22 |
Taylor and Maclaurin series, applications of Taylor polynomials
|
第10週 |
4/25,4/29 |
Vector functions and space curves, derivatives and integrals of vector functions
|
第11週 |
5/02,5/06 |
Arc length and curvature, motion in space: velocity and acceleration
|
第12週 |
5/09,5/13 |
Functions of several variables
|
第13週 |
5/16,5/20 |
The chain rule, directional derivatives and the gradient vector
|
第14週 |
5/23,5/27 |
Maximum and minimum values, Lagrange multipliers
|
第15週 |
5/30,6/03 |
Double integrals over rectangles, iterated integrals, double integrals over general regions
|
第16週 |
6/06,6/10 |
Double integrals in polar coordinates, applications of double integrals |
第17週 |
6/13,6/17 |
Line integrals |
|