課程資訊
課程名稱
微積分乙上
CALCULUS (GENERAL MATHEMATICS) (B)(1) 
開課學期
99-1 
授課對象
經濟學系  
授課教師
田光復 
課號
MATH1203 
課程識別碼
201 101B1 
班次
12 
學分
全/半年
全年 
必/選修
必修 
上課時間
星期二1,2(8:10~10:00)星期四3,4(10:20~12:10) 
上課地點
綜101綜101 
備註
大二以上限20人.可兼充通識名額3人.
限本系所學生(含輔系、雙修生)
總人數上限:100人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/991calculus_tien 
課程簡介影片
 
核心能力關聯
本課程尚未建立核心能力關連
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

微分,把一個形或體,切到無限細的想法。
積分,微分的逆向,亦即把無限細的片片組合起來看他數量是多大?
以上叫微積分。

若從形或體開始,在此階段的微積分,是以函數的方式描繪形或體的存在。所以切也者就是切函數,怎麼切?為了甚麼而切?有很多方式。

基本上切出來的無限小要有一個規律才能去探究、運用,也才能夠用積分來回復它,函數,的原型。

以上,形、體似是靜態的想法,實則微積分仍然能處理動的問題。例如一個球體的氣球以固定的 5 cc/sec速率打水進去(水幾乎不受壓縮),此球原先半徑是10公分,我們要斷定20秒後的球有多大,比如說半徑多少就好。這便是動態的微積分學。我們也可以不用固定的速率而是已知的速率規則打入,一樣地我們仍然可以斷定出任何秒後的球大小,除非灌破啦!

用在經濟財經金融,水便是錢,錢流入市場,或車站進出旅客,都要用到微積分學。 

課程目標
對函數會微分,對無窮小會積分。
微積分的計算,觀念的運用、應用。
微積分知識歷史及一些人文認識。 
課程要求
高中數學OK,具函數觀念者。
有學習自信心的。 
預期每週課後學習時數
 
Office Hours
每週五 09:10~10:00 備註: 助教的 office hour :星期五早上第2節課,在新數學館102 
指定閱讀
待定 
參考書目
Larson and Edwards 9e Calculus
即第九版微積分。 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
第1週
9/14,9/16  微積分介紹,歷史軌跡,函數、對稱性、奇偶性、圖形、數據與函數。多項式函數:0次1次2次3次....,與其之加減乘『除』之變化。 
第2週
9/21,9/23  極限與連續性。極限運算四大法則。