課程名稱 |
微積分乙下 Calculus (general Mathematics) (b)(2) |
開課學期 |
108-2 |
授課對象 |
醫學檢驗暨生物技術學系 |
授課教師 |
張志中 |
課號 |
MATH1204 |
課程識別碼 |
201 101B2 |
班次 |
06 |
學分 |
3.0 |
全/半年 |
全年 |
必/選修 |
必修 |
上課時間 |
星期二3,4(10:20~12:10)星期四10(17:30~18:20) |
上課地點 |
新102新102 |
備註 |
大二以上限20人. 限本系所學生(含輔系、雙修生) 總人數上限:100人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1082MATH1204_06 |
課程簡介影片 |
|
核心能力關聯 |
本課程尚未建立核心能力關連 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
One variable calculus: sequences and series
Multi-variable calculus: limit, continuity, differentiation, integration, and their applications including elementry probability. |
課程目標 |
Study the process of approximation and its limitation (errors), learn the tools and techniques for analyzing regular mappings with applications, and deepen the understanding of elementary functions. |
課程要求 |
Calculus of first semester |
預期每週課後學習時數 |
|
Office Hours |
每週五 10:20~11:10 每週三 13:20~14:10 備註: 地點:天數 103 |
參考書目 |
Textbook.
Thomas' calculus, early transcendentals. 13th edition in SI units.
Revised by M. D. Weir and J. Hass. Pearson 2016. 東華書局/新月圖書 代理
注意: 多數 微積分教科書的內容 大同小異,已有一本微積分書的同學可考慮不必再買
上述課本,只需研讀既有書本其相應的章節內容即可。學習數學必須動手習做,因此我會勾選課本
每節較具代表性(講明白一點,較繁複)的計算題 請同學練習。沒有購買課本的同學請務必拿手中既
有的書本的習題切實演練。 |
指定閱讀 |
待補 |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Midterm exam |
35% |
百分比暫訂 |
2. |
Final exam |
35% |
百分比暫訂 |
3. |
Quiz |
30% |
WeBWorK 小考 去除最低的5次成績後平均 |
|
週次 |
日期 |
單元主題 |
第1週 |
3/3, 3/5 |
3/3: 9.2 first order linear differential equations
3/5: 助教指導 webwork 操作方法。
-------------------------------------------
2/19: 9.2 first order linear differential equations
2/21: 10.7 power series |
第2週 |
3/10, 3/12 |
3/10: 10.7 power series
3/12: completion of 10.7
---------------------------------
2/26: 10.8 Taylor series |
第3週 |
3/17, 3/19 |
3/17: 10.8 Taylor series and 10.9 Taylor theorem and examples
3/19: 10.9 (completed) and the second half of 10.10 (applications of Taylor series)
=======================
3/5: 10.9 Taylor theorem and examples
3/7: 10.10 The binomial series and applications of Taylor series |
第4週 |
3/24, 3/26 |
3/24: 10.10 and 14.1
3/26: 14.2 limit (definition, properties, sandwich theorem, and examples)
=============================
3/12: 14.1, 14.2
3/14: Quiz 1 |
第5週 |
3/31, 4/2* |
3/31: 14.2 continuity, 14.3 partial derivatives, and 14.4 chain rule
4/2*: no class
============================
3/19: 14.3, 14.4
3/21: 14.4 the most general form of chain rule and some examples, and implicit differentiation revisited |
第6週 |
4/7, 4/9 |
4/7: 14.7 Extreme values and saddle points
4/9: 14.5 Directional derivatives and gradient vectors
=======================
3/26: 14.7 Extreme values and saddle points
3/28: directional derivatives and gradient vectors, 發 quiz 1 考卷 |
第7週 |
4/14, 4/16 |
4/14: 14.6 and 14.8 Lagrange multipliers (遠距教學)
4/16: recitation
=========================
溫書假 no class |
第8週 |
4/21, 4/23 |
4/21: midterm exam
4/23: 遠距教學 distance learning
=================================
4/9 and 4/11: 14.8 Lagrange multipliers |
第9週 |
4/28, 4/30 |
15.1
========================
4/16: 14.5 tangent lines of level curves, and 14.6 tangent planes
4/18: Quiz 2 |
第10週 |
|
15.2 and 15.3
=============================
4/23: Midterm exam.
4/25: 15.1 Double integrals |
第11週 |
|
4/30: 15.2
5/2: 發期中考卷 |
第12週 |
|
5/7: 15.3 and 11.3 polar coordinates
5/9: 11.4 and 15.4 |
第13週 |
|
5/14: 15.4
5/16: 演習課 |
第14週 |
|
5/21: 15.8 Substitutions in multiple integrals
5/23: Quiz 3 |
第15週 |
|
5/28: 15.8 Substitutions in multiple integrals and 15.5 triple integrals
5/30: 15.5 triple integrals |
第16週 |
|
由這行說明開始,包含本週與以下之內容為系統複製去年課程之進度,其目的在提供同學了解往年課程進行之內容與快慢。日後,隨著日期與課程進行,將會逐週進行更新。同學請以最新逐週公布的『課程大綱』為準,進行複習並演練習題。)
======================================
6/4: 15.7 and 15.8 (second half)
6/6: 15.7 and 15.8 (second half) |
第17週 |
|
6/11: recitation
6/13: quiz 4.
6/18: final exam |
|