課程資訊
課程名稱
複變函數論
Functions of a Complex Variable 
開課學期
103-1 
授課對象
理學院  數學系  
授課教師
王金龍 
課號
MATH3201 
課程識別碼
201 31300 
班次
 
學分
全/半年
半年 
必/選修
必修 
上課時間
星期二5,6(12:20~14:10)星期四5,6(12:20~14:10) 
上課地點
新302新302 
備註
總人數上限:75人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1031MATH3201_CA1 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

An introduction to the theory of analytic (holomorphic) functions of one complex variable. Studying domains (open connected subsets) in the (extended) complex plane, conformal transformations of planar domains. Line integrals as functions of arcs. Cauchy's theory. Calculus of Residues, Local properties of analytic functions. Power series. Harmonic Functions. Entire functions. Normal families of analytic functions. Euler's Gamma function. Riemann's zeta function and the Prime Number Theorem.

(Optional, most likely in the second semester) Elliptic functions, Picard's theorem, linear differential equations, Analytic continuations. 

課程目標
Complex-valued functions on domains inside the complex plane. Basic general theory of these analytic functions. Line integrals as a tool. From the fundamental theorem of calculus to Cauchy's integral theorem. Power series as tool. Elementary functions. Special analytic functions and maps. Analytic continuations. Riemann zeta functions and its applications. Riemann's mapping theorem. 
課程要求
Prerequisite : Calculus with proof, namely familiarity with point set topoogy, metric spaces, and regorous definitions of real numbers, limits and integrals. 
預期每週課後學習時數
 
Office Hours
每週五 12:20~13:10
每週四 16:30~17:20 備註: 星期四 16:30-17:20 為導生優先. 
參考書目
Ahlfors: Complex analysis
Whittaker and Watson: Modern Analysis 
指定閱讀
Stein: Complex Analysis 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
期中考 
40% 
 
2. 
期末考 
40% 
 
3. 
作業 
20% 
 
 
課程進度
週次
日期
單元主題
第1週
9/16,9/18  Ch.1 Holomorphic functions. 
第2週
9/23,9/25  Ch.2 Cauchy's theorem and integral formula. 
第3週
9/30,10/02  Ch.2 Applications. 
第4週
10/07,10/09  Ch.3 Meromorphic functions and residue. 
第5週
10/14,10/16  Ch.3 The argument principle. 
第6週
10/21,10/23  Ch.4 Fourier transform. 
第7週
10/28,10/30  Ch.5 Growth of functions and infinite products. 
第8週
11/04,11/06  Ch.5 Factorizations of entire functions  
第9週
11/11,11/13  Review. 11/13 midterm exam. 
第10週
11/18,11/20  Self-study break 
第11週
11/25,11/27  Ch.6 Gamma and zeta. 
第12週
12/02,12/04  Ch.7 Prime number theorem. 
第13週
12/09,12/11  Ch.8 Conformal mappings and Schwaartz lemma. 
第14週
12/16,12/18  Ch.8 Riemann mapping theorem. 
第15週
12/23,12/25  Ch.9 Elliptic integrals and elliptic functions. 
第16週
12/30,1/01  Ch.9 Addition theorem. 
第17週
1/06,1/08  Concluding remarks. 1/08 Final exam.