課程資訊
課程名稱
微積分2
CALCULUS (2) 
開課學期
109-1 
授課對象
化學工程學系  
授課教師
蔡國榮 
課號
MATH4007 
課程識別碼
201E49820 
班次
12 
學分
2.0 
全/半年
半年 
必/選修
必修 
上課時間
第10,11,12,13,14,15,16,17,18 週
星期三8,9,10(15:30~18:20)星期五1,2(8:10~10:00) 
上課地點
新102普102 
備註
初選不開放。本課程以英語授課。密集課程。英文授課.初選不開放.密集課程.統一教學.三10為實習課.
限本系所學生(含輔系、雙修生) 或 限僑生、國際學生
總人數上限:90人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1091MATH4007_12 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

In this course, we will continue our journey in Calculus and turn our attention to the theory of integration (à la Riemann). We shall begin with the definition and techniques of integration, derive the Fundamental Theorem of Calculus that provides an important link between integration & differentiation, compute areas and volumes of some 2D/3D objects, discuss applications to analytic (plane) geometry and solve certain first order differential equations.

Definitions are discussed and the most important theorems are derived in the lectures with a view to help students to develop their abilities in logical deduction and analysis. Practical applications of Calculus in various fields are illustrated in order to promote a more organic interaction between the theory of Calculus and students' own fields of study.

This course also provides TA classes in which students are able to make their skills in handling calculations in Calculus more proficient under the guidance of our teaching assistants.

If you wish to contact the instructor (Dr. Kwok-Wing Tsoi), please email to kwokwingtsoi@ntu.edu.tw 

課程目標
Students would be familiar with Calculus as a tool and be able to apply it in various subjects after finishing this course. Calculus 1-2-3-4 provide the basis for the study of various advanced courses like Engineering Mathematics, Analysis and Differential Equations. 
課程要求
High school mathematics (trigonometry), Calculus 1 
預期每週課後學習時數
 
Office Hours
另約時間 備註: TBA 
參考書目
TBA 
指定閱讀
Textbook: Stewart, Clegg, Watson, CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition

This course will be supplemented by instructor's lecture notes. 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
第9週
11/11,11/13  Integration I : Definition à la Riemann & FTC 黎曼積分 & 微積分基本定理 
第10週
11/18,11/20  Integration II : Method of substitutions 代入法 
第11週
11/25,11/27  Integration III : Integration by parts, partial fractions 分部積分法, 部分分式 
第12週
12/02,12/04  Integration IV : Improper integrals 瑕積分 
第13週
12/09,12/11  Applications in Geometry I : Curves 曲線幾何 
第14週
12/16,12/18  Applications in Geometry II : Surfaces 曲面幾何 
第15週
12/23,12/25  Applications in Geometry III : Polar Coordinates 極座標 
第16週
12/30,1/01  Introduction to Differential equations 微分方程 
第17週
1/06,1/08  Reviews