課程名稱 |
分析化學二 Analytical Chemistry (Ⅱ) |
開課學期 |
100-2 |
授課對象 |
理學院 化學系 |
授課教師 |
張哲政 |
課號 |
Chem2008 |
課程識別碼 |
203 21220 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
必帶 |
上課時間 |
星期一3,4(10:20~12:10)星期四2(9:10~10:00) |
上課地點 |
化210室化210室 |
備註 |
本課程中文授課,使用英文教科書。外系生須經授課教師同意.詳化學系選課須知.須先修普化. 限學士班二年級以上 且 限本系所學生(含輔系、雙修生) 總人數上限:80人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1002ACII |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This course extends the knowledge of the analytical chemistry to include the fundamental principles and application of modern instrumental methods including spectroscopic, spectrometric, and separation methods. The topics covered have applications to many subject areas in Natural Sciences, Life Science and Engineering.
This course is presented in a lecture/discussion format. The content of the course includes:
Part I:
I. Electrolysis
A. Electrogravimetry
a) Separation
b) Types
c) Effect of I on E
i) Concentration polarization
ii) Kinetic polarization
d) Non-potentiostatic Method
i) Change in I & IR
ii) I-V behavior during electrolysis
e) Potentiostatic Method
i) Three-electrode system
ii) Cell Potential and Current Change
B. Coulometry
a) Analysis
b) Controlled-potential coulometry
c) Controlled-current coulometry
II. Voltammetry
A. Basic Concepts
a) Electrode Reaction
b) Voltammogram
c) Concentration Profile
d) Types
e) Supporting Electrolyte
f) Nernst Diffusion Layer
g) Steady-State Current
h) i - E Relationship
B. Microelectrode
a) Disk and ring-disk electrodes
b) Hg electrodes
c) Chemically modified electrodes
C. Hydrodynamic Voltammetry
a) Sampled Current Voltammetry
b) E½ & n
c) i - E Relationship
d) Anodic and Mixed Anodic/Cathodic Voltammogram
D. Stationary Solution Voltammetry
a) Polarography
b) Cyclic Voltammetry (CV)
i) Excitation Signal
ii) Scan Rate
iii) Cyclic Voltammogram
iv) CV Analysis
c) Pulse Voltammetric Methods
i) Differential Pulse Voltammetry
ii) Square Wave Voltammetry
d) Stripping Methods
Part II:
I. Introduction to Instrumental Analysis
II. Fundamentals of Spectroscopy/Spectrometry
A. Introduction to Spectroscopy
B. Characteristics of Electromagnetic radiation
C. Wave Property of Light and Optical Component
a) Interference
i) Interference Filter
ii) Fabry-Perot Etalon
iii) Interference Filter
b) Transmission
i) Transmittance
ii) Cell
iii) Optical Fiber
c) Reflection
i) Reflectance
ii) Low-Reflection Coating
iii) Reflection vs. Incident Angle
iv) Critical Angle
d) Refraction
i) Snell’s Law
ii) Dispersion
iii) Chromatic Aberration and Correction
iv) Mirage
v) Lens and Prism
e) Scattering
i) Elastic and Inelastic Scatterings
ii) Rayleigh and Mie Scatterings
iii) Tyndall Effect
iv) Raman Scattering
f) Diffraction
i) Single and Double Slits
ii) Bragg’s Law
iii) Echelle- and Echellette-type Gratings
iv) Monochromator
v) Holographic Filter
vi) Angular and Linear Dispersions
vii) Resolving Power and Gathering Power
viii) Effective Bandwidth
D. Particle Property of Light and Its Use
a) Photoelectric effect
b) Absorption
i) Single and Triplet States
ii) Atomic and Molecular Absorption
iii) Vibronic Transition
iv) Franck-Condon principle
v) Absorption Spectrum
vi) Absorption Filter
c) Emission
i) Atomic and Molecular Emission
ii) Kasha's rule
iii) Blackbody radiation
E. Spectroscopy
i) Type of Spectroscopy
ii) Nature of Excitation
III. Measurement
A. Measurement Process
B. Beer’s Law
a) Absorbance, Absorptivity, Absorptance
b) Limitations of Beer’s law
C. Design of Optical Instruments
D. Single- and Double-Beam Instruments
VI. UV and Visible Absorption Spectrometry
A. Range and Type of UV/Vis Radiation
B. Principle
a) Molar Absorptivity
b) Spectroscopic Process
i) (83e0), (83e3), n electron Transition
ii) d, f-electron Transition
iii) internal charge transfer
c) Effect of Multichromophores
d) d, f-electron Transition
C. Measurement
a) Standard Addition Method
b) Solvent Selection
c) Solvent Effect
d) Calibration
D. Instrumentation
a) Sample Cell and Construction Materials
b) Source
i) Tungsten Filament Lamp
ii) Halogen Lamp
iii) Arc Lamp
c) Wavelength Selector
i) Filter
ii) Grating
d) Slit
e) Detector
i) Phototube
ii) Photodiode
iii) Photomultiplier Tube
iv) Photovoltaic Cell
v) Multichannel Detector
1) Photodiode Array
2) Charge-Transfer Device
3) Complementary MOS Sensor
E. Spectroscopic Information
a) Imaging
b) Qualitative
i) Saturated vs. Unsaturated compounds
ii) Functional Group
iii) Aromatic compound
iv) Derivative Spectrophotometry
c) Quantative
i) Mixture Analysis
ii) Photometric Titration
iii) Scatchard Plot
iv) Method of Continous Variation
v) Flow Injection Analysis
F. Spectral Analysis
a) Woodward-Fieser Rule
i) Diene
ii) (83d1),(83d2)-Unsaturated Carbonyls
V. Luminescence Spectroscopy
A. Luminescence
B. Principle
a) Spectroscopic Process
i) Excitation
ii) Relaxation
b) Quantum Yield
c) Favorable Condition for Luminescence
d) Emission Spectrum
e) 90˚ Detection
f) Luminescence Intensity
g) Type of Luminescence
i) Thermoluminescence
ii) Photoluminescence (PL)
iii) Chemiluminescence (CL)
iv) Bioluminescence
v) Electroluminescence (EL)
C. Instrumentation
D. Spectroscopic Information
a) FL System
i) Aliphatic
ii) Aromatic
iii) Rigid and Chelate Compounds
b) Fluorescent Agent
i) Neutral Analyte
ii) Ionic Analyte
c) Use of Excited-State Molecules
i) Luminescence Quenching
ii) Stern-Volmer Equation
iii) Stern-Volmer Plot
iv) Intracellar Oxygen Sensor
d) Fluorescence Resonance Energy Transfer
i) Förster Transfer
ii) Application
VI. Infrared Spectroscopy
A. Range and Type of IR Radiation
B. Principle
a) Molecular Excitation
b) Type of Molecular Vibration
i) Stretching
ii) Bending
c) Normal Mode of Vibration
d) Spectroscopic Process
i) Harmonic Oscillator
ii) Anharmonicity Oscillator
d) IR-Active Vibration
i) Dipole Moment
ii) Dynamic Dipole
C. Instrumentation
a) Nondispersive Instrument
i) Filter Photometers
ii) Photometer without Filter
iii) Filter Correlation Analyzer
b) Dispersive Instrument
i) Double-Beam Spectrometer
ii) FTIR Spectrometer
c) Sample Cell and Construction Materials
d) Source
i) Nernst Glower
ii) Globar
iii) Nichrome Wire
iv) Mercury Lamp
v) Carbon Dioxide Laser
e) Wavelength Selector
i) Interference Filter
ii) Filter Wedge
iii) Monochromator
f) Detector
i) Thermocouple
ii) Bolometer
iii) Golay Detector
iv) Pyroelectric Detector
v) IR Photonic Detector
D. Spectroscopic Information
a) Functional Group
b) Quantitative
VII. Raman Spectroscopy
A. Principle
a) Polarizability
b) Raman Scattering
c) Energy Shift
d) Raman-Active Vibration
e) Raman Scattering Intensity
f) Advantage Over IR
B. Instrumentation
a) Laser
C. Spectroscopic Information
Raman vs. IR
VIII. Nuclear Magnetic Resonance Spectroscopy
A. Principle
a) Range of Radiation
b) Nuclear Spin
i) Spin Angular Momentum
ii) Induced Magnetic Field
B. Instrumentation and Measurement
a) Phase Coherence
b) Magnetic Resonance
i) Uncertainty Principle
ii) Relaxation Mode
d) Secondary Field
i) Electrons in Orbit
ii) Screen Effect
IX. Atomic Absorption Spectroscopy
A. Principle
a) Emission
b) Atomic Structure
B. Measurement
a) Source of Errors - Uncertainty Principle
b) Spectral Line Shape
i) Natural Line Width
ii) Pressure Broadening
iii) Doppler Broadening
iv) Background Radiation
v) Molecular Emission Contribution
vi) Self-Absorption
c) Temperature Effect
d) Interference
C. Instrumentation
a) System
b) Atomizer
i) Flame Atomizer
ii) Electrothermal Atomizer
iii) DC Arc
iv) Inductively Coupled Plasma Discharge
X. Analytical Separation
A. General Description
a) Solvent Extraction
b) Mobile and Stationary Phases
c) Classification
i) Based on Contact Physics
ii) Based on Equilibrium
c) Elution
B. Principle
a) Migration Rate
i) Dead Time
ii) Distribution Constant
b) Retention Time
c) Flow Rate – Flow Velocity Relationship
d) Migration Rate - Distribution Constant
e) Retention Factor
f) Selectivity Factor
g) Band Broadening
i) Rate Theory of Chromatography
ii) Tailing and Fronting
h) Column Efficiency
i) Plate Height
ii) Number of Theoretical Plates
iii) Column Efficiency Variables
i) Column Resolution
i) Retention Factor Effect
ii) Selectivity Factor Effect
iii) Resolution Effect on Retention Time
j) Column Resolution
XI. Gas Chromatography
A. Separation Process
B. Injection and Detection
C. Detector
D. Sample Preparation
XII. High-Performance Liquid Chromatography
A. Chromatographic Process
B. Injection and Detection
C. Reversed-Phase Separation
D. Gradient Separation |
課程目標 |
This course provides students with the background theory and operation principles of chemical analysis methods. The specific objectives of the course are as follows:
◎to become familiar with the various spectroscopy, spectrometry, and separation methods currently available
◎to develop an understanding of the theories upon which the principles of the common spectroscopic, spectrometric, and separation procedures are based
◎to understand the correlations of the spectroscopic/spectrometric/separation analysis concepts and of various controllable and measurable quantities
to learn how the different spectroscopic/spectrometric/separation analysis methods are used to analyze samples
◎to understand the limitations and strengths of particular analysis approaches
◎to gain skill and competence in the use of related analytical standards/references
◎to learn to apply chemical equilibria and stoichiometry to solve spectroscopic/spectrometric/separation analysis problems
|
課程要求 |
本課程的考試沒有補考。學生預定之日程表若與本課程之上課或考試時程有任何衝突,切勿修習本課程。學生若因身體不適而錯過考試,則應提出就診紀錄。
學生上課出席,且課堂上參與授課內容的討論,對教材深入的了解極有幫助。雖然本課程不會每天監看出席,但是若學生無法規律上課,則請勿選修這門課。講義僅當次課堂分發。學生應隨堂自行摘寫上課筆記。課堂中不得照相攝影。
|
預期每週課後學習時數 |
|
Office Hours |
每週四 10:10~11:10 每週一 12:10~13:10 備註: It starts right after the class and ends whenever the last student
finishing asking his/her questions. |
指定閱讀 |
Skoog, West, Holler, Crouch, Fundamentals of Analytical Chemistry, 8th Ed.,
Thomson, ISBN: 0-534-41797-3
Optional Text
Holler, Skoog, and Crouch, Principles of Instrumental Analysis, 6th Ed., Thomson Brooks/Cole, ISBN: 0-495-01201-7
|
參考書目 |
James W. Robinson, Undergraduate Instrumental Analysis, Marcel Dekker
Francis Rouessac, Annick Rouessac, Chemical Analysis-Modern Instrumentation
Methods and Techniques, 2nd Ed., Wiley, ISBN: 978-0-470-85902-5
K. A. Rubinson, J. F. Rubinson, Contemporary Instrumental Analysis, Prentice-
Hall, Inc.
Daniel C. Harris, Quantitative Chemical Analysis, 7th Ed., W.H. Freeman and
Company
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
First Exam |
30% |
Make-up exams will not be permitted to those who miss the midterms or the final. The content of the tests includes the materials discussed in your textbook as well as those taught in the class. Calculators used in the exam cannot contain any dictionary function. Cell phones and any other communication devices should be kept away from the exam. Anyone who only sits in the class is not allowed to take the midterm or the final. |
2. |
Second Exam |
30% |
Make-up exams will not be permitted to those who miss the midterms or the final. The content of the tests includes the materials discussed in your textbook as well as those taught in the class. Calculators used in the exam cannot contain any dictionary function. Cell phones and any other communication devices should be kept away from the exam. Anyone who only sits in the class is not allowed to take the midterm or the final. |
3. |
Final Exam |
40% |
Make-up exams will not be permitted to those who miss the midterms or the final. The content of the tests includes the materials discussed in your textbook as well as those taught in the class. The final test is a comprehensive exam and will require you to integrate the class material in a meaningful way. Calculators used in the exam cannot contain any dictionary function. Cell phones and any other communication devices should be kept away from the exam. Anyone who only sits in the class is not allowed to take the midterm or the final. |
4. |
Quizzes |
0% |
Make-up exams will not be permitted to those who miss the midterms or the final. Bonus grades will be given based on the student’s performance in the pop quiz, which will be held on an irregular basis. Additional bonus grades will be given on class notes for students with semester grades on the pass-fail border. |
|
|