Course Information
Course title
高等統計推論二
Advanced Statistical Inference (Ⅱ) 
Semester
106-2 
Designated for
COLLEGE OF SCIENCE  Institute of Applied Mathematical Sciences  
Instructor
陳 宏 
Curriculum Number
MATH7604 
Curriculum Identity Number
221 U1580 
Class
 
Credits
3.0 
Full/Half
Yr.
Half 
Required/
Elective
Elective 
Time
Monday 4(11:20~12:10) Thursday 8,9(15:30~17:20) 
Room
天數305天數305 
Remarks
研究所統計科學組基礎課。
Restriction: juniors and beyond
The upper limit of the number of students: 35.
The upper limit of the number of non-majors: 15. 
Ceiba Web Server
http://ceiba.ntu.edu.tw/1062MATH7604_ 
Course introduction video
 
Table of Core Capabilities and Curriculum Planning
Table of Core Capabilities and Curriculum Planning
Course Syllabus
Please respect the intellectual property rights of others and do not copy any of the course information without permission
Course Description

Contents:
1. Sufficiency, likelihood, and equivalence principals.
2. Point Estimation.
3. Test of hypothesis.
4. Interval estimation.
5. Asymptotic methods
6. Topics of Linear model, generalized linear model and logistic model
 

Course Objective
The objective of this course is to introduce to the students of theory of inference including estimation, interval estimation and hypothesis testing. Both small and large sample theorems of hypothesis testing, interval estimation, and confidence intervals will cover. Applications to topics such as exponential families, linear models and nonparametric inference will be discussed.
It also provides a necessary basis for students for a further study of other advanced statistical courses.  
Course Requirement
Advanced statistical inference (I) or equivalent. Please refer to course webpage at ceiba.ntu.edu.tw on advanced Statistical Inference I (1001ASI)
 
Student Workload (expected study time outside of class per week)
 
Office Hours
Thu. 14:00~15:00
Mon. 13:20~14:20 Note: 週一、週四 授課老師 (天文數學大樓465室) ; 週一1:20-2:20PM、週四14:00-15:00、週五3-5PM 助 教 (天文數學館543室) 
Designated reading
待補 
References
Textbook and References:
1. Casella, G. and Berger, R. L. (2002). Statistical Inference. 2nd ed. Duxbury Press. (Textbook)
2. Rice, J.A. (1995). Mathematical Statistics and Data Analysis. 2nd edition. Duxbury Press.
3. Bickel, P. S. and Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics,
Vol. I, 2nd ed. Prentice Hall.
4. Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd Edition, Springer.
5. Karr, A. F. (1993). Probability. Springer-Verlag.
 
Grading
 
No.
Item
%
Explanations for the conditions
1. 
Homeworks 
20% 
 
2. 
Midterm 
30% 
 
3. 
Final 
30% 
 
4. 
Quizzes 
20% 
 
 
Progress
Week
Date
Topic
第1週
2/26,3/01  bag of words model, one parameter exponential family 
第2週
3/05,3/08  Probability Inequalities: Gaussian Tail Inequality, Hoeffding’s Inequality, Bounded Difference Inequality, maximum of random variables 
第3週
3/12,3/15  MLE: consistency and asymptotic normality under compactness assumption (part 1) 
第4週
3/19,3/22  MLE: consistency and asymptotic normality under compactness assumption (part 2) 
第5週
3/26,3/29  probability inequality 
第6週
4/02,4/05  probability inequality (cont.) 
第7週
4/09,4/12  Introduction of Bayes estimate. EM algorithm (I) and Loss Function of Optimality.  
第8週
4/16,4/19  Multinormial distribution with large number of cells (Teaching model: histogram), MLE under the assumption of compactness 
第9週
4/23,4/26  4/23: Quiz 1; 4/26 midterm 
第10週
4/30,5/03  No class! 自主學習週 
第11週
5/07,5/10  Point Estimation. Information bound and systematic procedure of finding UMVUE.
Information Bound  
第12週
5/14,5/17  Introduction of Bayes estimate. EM algorithm (I) and Loss Function of Optimality. Test of hypothesis: Framework, LR test, Wald test, and Score test (asymptotic distribution) , large sample test , Likelihood ratio test, 
第13週
5/21,5/24  Test of hypothesis (cont.) 
第14週
5/28,5/31  ToolBasedAsymptotic 
第15週
6/04,6/07  Topics: generalized linear model and logistic model  
第16週
6/11,6/14  Topics: smoothing techniques for curve fitting 
第17週
6/18,6/21  6/18: no class; 6/21 wrap up Point 1:
What is Bayes estimate? Talk about prior and posterior link it with estimate with penalty such as ridge and lasso.
Point 2:
Bayes estimates are often can be written as a linear combination of mld and mode of prior.
References for Bayes estimate
https://newonlinecourses.science.psu.edu/stat414/node/241/