課程名稱 |
實分析一 Real Analysis (Ⅰ) |
開課學期 |
104-1 |
授課對象 |
理學院 數學系 |
授課教師 |
陳俊全 |
課號 |
MATH7201 |
課程識別碼 |
221 U2870 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期一1,2(8:10~10:00)星期三3,4(10:20~12:10) |
上課地點 |
天數102天數102 |
備註 |
總人數上限:50人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1041MATH7201_RA |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
The course will cover Chapters 1-4 of [1] and some contents of [2], including
1.Measure Theory: outer measure, Caratheodory outer measures, n-dimensional Lebesgue measure
2.Integration Theory: measurable functions, Lebesgue integral, monotone convergence and Lebesgue dominated convergence theorem, Fubini’s theorem
3.Elements of Functional Analysis: Baire Category Theorem and its consequences, open mapping theorem and closed graph theorem, separation principles and Hahn-Banach theorm, Hilbert spaces
4.Lp-spaces
5.Differentiation and Integration: Hardy-Littlewood maximal function, Lebesgue differentiation theorem, functions of bounded variation, absolutely continuous functions, differentiability of functions
|
課程目標 |
This course aims to introduce basic theory and techniques of modern analysis. |
課程要求 |
Course prerequisite: Introduction to Mathematical Analysis I, II |
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
指定閱讀 |
待補 |
參考書目 |
Textbooks:
[1] Elias M. Stein and Rami Shakarchi, Real Analysis
[2] Fon-Che Liu, Lecture notes in Real Analysis
Reference books:
[3] Richard Wheeden and Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis
[4] Elliott H. Leib and Michael Loss, Analysis
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
homework |
30% |
|
2. |
mid-term exam |
30% |
|
3. |
final exam |
40% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/14,9/16 |
Motivations for the Lebesgue theory: Limits of Riemann integrals; Fourier series; Measure=length, area, volume
Axioms of measure
Background (1870-1910): Weierstrass's nowhere differential function, Peano's space-filling curve |
第2週 |
9/21,9/23 |
Lemma for rectangles and cubes;
Outer measure (exterior measure);
Outer Jordan content;
"closed cubes" can be replaced by "open cubes" or "rectangles" in the definition of outer measure;
Outer measure of a cube/rectangle;
Properties of outer measure: outer measure of empty set, monotonicity, countable sub-additivity, sets separated by a positive distance, set can be written as countable union of almost disjoint cubes |
第3週 |
9/28,9/30 |
Properties of open sets;
Lebesgue measurable sets. |
第4週 |
10/05,10/07 |
Properties of measurable sets
Countable Additivity |
第5週 |
10/12,10/14 |
sigma algebra;
Borel sets;
Non-measurable set;
Invariance properties of measurable sets: translation, rotation, reflection and linear transformation |
第6週 |
10/19,10/21 |
Measurable functions
Approximation by simple functions and step functions |
第7週 |
10/26,10/28 |
Egorove's theorem
Lusin's theorem
Convergence in measure |
第8週 |
11/02,11/04 |
Integration theory
Lebesgue integral: simple functions, bounded functions, nonnegative functions, general case
Bounded convergence theorem
Fatou's lemma |
第9週 |
11/09,11/11 |
Bounded convergence theorem, Monotone convergence theorem, Fatou's lemma, Dominated convergence theorem |
第10週 |
11/16,11/18 |
L1 space, completeness of L1 space;
Linear transformation and integral;
L1 continuity under translation |
第11週 |
11/23,11/25 |
Fubini's theorem and Tonelli's theorem |
第12週 |
11/30,12/02 |
Hardy-Littlewood maximal function, simple Vitali lemma;
Lebesgue differentiation theorem |
第13週 |
12/07,12/09 |
Points of Lebesgue density, Lebesgue points of a function, differentiation on sets shrinking regularly;
Function of bounded variation |
第14週 |
12/14,12/16 |
Good kernels and approximations to the identity |
第15週 |
12/21,12/23 |
Simple Vitali lemma II; Vitali covering lemma |
第16週 |
12/28,12/30 |
Differentiability of monotone functions and BV functions,
Absolutely continuous functions |
第17週 |
1/04,1/06 |
Lp space: Lp and L-infinite norm
Young's inequality
Holder and Minkowski inequalities
Completeness of Lp space |
|