課程名稱 |
實分析一 Real Analysis (Ⅰ) |
開課學期 |
108-1 |
授課對象 |
理學院 應用數學科學研究所 |
授課教師 |
陳俊全 |
課號 |
MATH7201 |
課程識別碼 |
221 U2870 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期一3,4(10:20~12:10)星期三3,4(10:20~12:10) |
上課地點 |
天數102天數102 |
備註 |
總人數上限:60人 外系人數限制:15人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1081MATH7201_RA_I |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Real Analysis is indispensable for in-depth understanding and effective application of methods of modern analysis. The course will cover the following topics:
1.Measure Theory: outer measure, Caratheodory outer measures, n-dimensional Lebesgue measure
2.Integration Theory: measurable functions, Lebesgue integral, monotone convergence and Lebesgue dominated convergence theorem, Fubini’s theorem
3.Elements of Functional Analysis: Baire Category Theorem and its consequences, open mapping theorem and closed graph theorem, separation principles and Hahn-Banach theorem, Hilbert spaces
4. Differentiation and Integration: Hardy-Littlewood maximal function, Lebesgue differentiation theorem, functions of bounded variation, absolutely continuous functions, differentiability of functions
|
課程目標 |
This course aims to introduce basic theory and techniques of modern analysis. |
課程要求 |
Course prerequisite: Introduction to Mathematical Analysis I, II |
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
指定閱讀 |
Fon-Che Liu, Real Analysis, Oxford University Press |
參考書目 |
[1] Elias M. Stein and Rami Shakarchi, Real Analysis
[2] Richard Wheeden and Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis
[3] Elliott H. Leib and Michael Loss, Analysis |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
mid-term exam |
30% |
|
2. |
final exam |
40% |
|
3. |
homework |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/09,9/11 |
Introduction:
1. Bad functions: Weierstrass' nowhere differentiable function; Peano's space-filling function
2. Limits of integrals and Fourier series
Volume of rectangles; open sets and cubes; Jordan outer measure and Lebesgue outer measure; |
第2週 |
9/16,9/18 |
Properties of Lebesgue outer measure: monotonicity, countable sub-additivity, etc. |
第3週 |
9/23,9/25 |
Measurable sets: open sets; closed sets; unions, intersections, and complements of measurable sets |
第4週 |
9/30,10/02 |
Measurable sets: additivity for disjoint sets; limit property; translation and dilation properties of Lebesgue measure |
第5週 |
10/07,10/09 |
1. σ algebra, Borel sets, axiom of choice, non-measurable sets
2. Definition of measurable functions |
第6週 |
10/14,10/16 |
1. Properties of measurable functions: sum and product, composition with a continuous function, sup/inf and limsup/liminf, lim
2. Approximations by simple and step functions, Egorov's Theorem |
第7週 |
10/21,10/23 |
1. Lusin's Theorem; Littlewood's three principles
2. Integration theory: integration of simple functions; integration of bounded functions supported on finite-measure sets |
第8週 |
10/28,10/30 |
1. Bounded convergence theorem
2. Integration of non-negative functions: linearity, additivity, monotonicity, and other basic properties |
第9週 |
11/04,11/06 |
1. General case: integrable functions, Dominated Convergence Theorem
2. Midterm examination |
第10週 |
11/11,11/13 |
1. Invariance properties of integrals: translation, reflection, dilation; absolute continuity of an integrable function
2. L^1 space, completeness of L^1 space |
第11週 |
11/18,11/20 |
Fubini's Theorem |
第12週 |
11/25,11/27 |
1. Tonelli's Theroem; Applications of Fubini's Theorem
2. Abstract measure space |
第13週 |
12/02,12/04 |
1. Construction of outer measures
2. Caratheodory measurable sets
3. Equivalence of Caratheodory measurability and Lebesgue measurability in Euclidean spaces |
第14週 |
12/09,12/11 |
1. Premeasure and extension theorem
2. Integration theory on an abstract measure space: measurable function, Egorov's theorem, Fatou's Lemma, Monotone Convergence Theorem, Dominated Convergence Theorem |
第15週 |
12/16,12/18 |
1. Product measure
2. Completion of the product measure of two Lebesgue measures |
第16週 |
12/23,12/25 |
General Tonelli's theorems and Fubini's theorems |
第17週 |
12/30,1/01 |
Polar coordinates and the corresponding product measure |
|