課程資訊
課程名稱
實分析一
Real Analysis (Ⅰ) 
開課學期
111-1 
授課對象
理學院  應用數學科學研究所  
授課教師
陳俊全 
課號
MATH7201 
課程識別碼
221 U2870 
班次
 
學分
3.0 
全/半年
半年 
必/選修
必修 
上課時間
星期一3,4(10:20~12:10)星期三3,4(10:20~12:10) 
上課地點
天數101天數101 
備註
總人數上限:65人
外系人數限制:20人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

The first semester of this course will cover the following topics :
1. Measure Theory: outer measure, Caratheodory outer measures, n-dimensional Lebesgue measure
2. Integration Theory: measurable functions, Lebesgue integral, monotone convergence and Lebesgue dominated convergence theorem,
Fubini’s theorem
3. Elements of Functional Analysis: Baire Category Theorem and its consequences, open mapping theorem and closed graph theorem,
separation principles and Hahn-Banach theorem, Hilbert spaces

The topics in the second semester will include:
4. Differentiation and Integration: Hardy-Littlewood maximal function, Lebesgue differentiation theorem, functions of bounded variation,
absolutely continuous functions, differentiability of functions
5. L^p spaces
6. Abstract Measure and Signed Measures: absolute continuity, Radon-Nikodym Theorem
7. Convolution operators and Fourier Transform
 

課程目標
Course Goal:This course aims to introduce basic theory and techniques of modern analysis. 
課程要求
Introduction to Mathematical Analysis I, II; Linear Algebra
 
預期每週課後學習時數
 
Office Hours
另約時間 備註: TA's email 吳悠:R10221008@ntu.edu.tw 閻天立:R09221014@ntu.edu.tw 
指定閱讀
 
參考書目
(1) Fon-Che Liu, Real Analysis, Oxford University Press (2) Elias M. Stein and Rami Shakarchi, Real Analysis 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Homework 
30% 
 
2. 
Midterm Exam 
30% 
 
3. 
Final Exam 
40% 
 
 
課程進度
週次
日期
單元主題
第1週
9/5-9/7  0. Introduction:
Background and motivation:
(0) continuous nowhere differentiable functions, functions of bounded
variation, Cantor's set, a space-filling curve, Borel's measurable
sets, Lebesgue's theory, non-measurable sets
(1) Length, area, volume
(2) Fourier series
(3) Limits of Integrals

1. Measure theory
1-1 Properties of area (length, volume)
1-2 Rectangles and open sets 
第2週
9/12-9/14  1. Measure theory
1-3 Jordan exterior (outer) measure
1-4 Lebesgue exterior (outer) measure
Examples, Cantor set,
Equivalent definitions of the Lebesgue exterior measure
Properties of exterior measure: monotonicity, sub-additivity  
第3週
9/19-9/21  1-4 Lebesgue exterior (outer) measure
Properties of exterior measure: monotonicity, sub-additivity,
open sets approximation, disjoint sets with a distance
1-5 Measurable sets and the Lebesgue measure
Motivation
Basic properties:
(1) Open sets, measure zero sets, and closed sets are measurable.
(2) A countable union of measurable sets is measurable.  
第4週
9/26-9/28  1-5 Measurable sets and the Lebesgue measure
(3) The complement of a measurable is measurable
(4) A countable intersection of measurable sets is measurable.
Theorem: Countable additivity holds for disjoint measurable sets
Sigma-algebra 
第5週
10/3-10/5  1-5 Measurable sets and the Lebesgue measure
- Increasing and decreasing sequences of sets
- sigama-algebra and Borel sets: G_delta sets and F_sigma sets, relation
between Borel sets and Lebesgue measurable sets
- Non-measurable sets 
第6週
10/10-10/12  - Invariance properties: translation, reflection, dilation
- Caratheodory measurable 
第7週
10/17-10/19  1-6 Measurable function
- Riemann integral and Lebesgue integral
- Definition: equivalent definitions
- Continuous functions are measurable
- sup, inf , limsup, liminf, and lim of measurable functions
- sum and product of measurable functions 
第8週
10/24-10/26  - measure zero
- almost everywhere
1-7 Approximation by simple functions and step functions
- approximation by simple function 
第9週
10/31-11/1  - approximation by step functions
- midterm examination 
第10週
11/7-11/9  1-8 Littlewood's three principles
- Egorov's Theroem
- Lusin's Theorem
- Littlewood's three principles
Chapter 2 Integration Theorey
2-1 The Lebesgue integral
- 4 steps: simple function, bounded functions supported on a set of
finite measure, non-negative functions, general functions 
第11週
11/14-11/16  - Step 1 simple functions: Independence of representation, linearity,
additivity, monotonicity, triangle inequality
- Step 2 bounded functions supported on a set of finite measure: limit of
the integrals of convergent simple functions  
第12週
11/21-11/23  - Step 2 bounded functions supported on a set of finite measure:
linearity, additivity, monotonicity, triangle inequality, Bounded
Convergent Theorem, Riemann integrable implies Lebesgue
integrable
- Step 3 nonnegative functions: linearity, additivity, monotonicity, 
第13週
11/28-11/30  - Step 3 Fatou's lemma, Monotone Convergence Theorem
- Step 4 general case: integrable functions, linearity, additivity,
monotonicity, Dominated Convergence Theorem, invariance
properties
2-2 L1 space: completeness of L1 
第14週
12/5-12/7  2-2 L1 space: convergence in L1 implies convergence of a subsequence almost everywhere; approximation by simple functions, step functions, or continuous functions of compact support; invariance properties; complex valued functions 
第15週
12/12-12/14  2-3 Fubini's Theorem: statement and proof