課程名稱 |
微分幾何一 Differential Geometry (Ⅰ) |
開課學期 |
100-1 |
授課對象 |
理學院 數學研究所 |
授課教師 |
王文才 |
課號 |
MATH7301 |
課程識別碼 |
221 U2930 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期三8(15:30~16:20)星期五3,4(10:20~12:10) |
上課地點 |
天數305天數305 |
備註 |
研究所數學組基礎課。 總人數上限:30人 |
|
|
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Modern differential geometry encompasses a wide array of techniques and results. Beginning with an overview of smooth differential manifolds (including coordinates, vector fields, tangent bundles, differential forms, tensors) we will then discuss Riemannian manifolds (those for which metric notions such as length, volume, etc. are defined), connections (leading to Hessian and Laplacian), exponential map, geodesics, submanifolds, and curvature.
A significant part of the remainder of the course will study the effects curvature has on geometry and topology. In particular, some highlights to be covered are the Gauss-Bonnet theorem, applications of second variational formula, and a sphere theorem.
|
課程目標 |
Provide an essential foundation in differential geometry for all students, and open a way to pursue work or research in geometry. |
課程要求 |
Advanced calculus |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
A Comprehensive Introduction to Differential Geometry, vol. 1, M. Spivak Riemannian Geometry, 3rd edition, P. Petersen, Springer-Verlag |
指定閱讀 |
Textbook: Riemannian Geometry, M. do Carmo, Birkhäuser 1992 ISBN 3-7643-3490-8 |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
作業 |
70% |
|
2. |
報告 |
10% |
|
3. |
考試 |
20% |
|
|
|