課程名稱 |
大域微分幾何 Introduction to Global Differential Geometry |
開課學期 |
99-2 |
授課對象 |
理學院 數學系 |
授課教師 |
黃武雄 |
課號 |
MATH5313 |
課程識別碼 |
221 U3760 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期二3,4,@(10:20~) |
上課地點 |
天數102 |
備註 |
總人數上限:50人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/992Global_Diff_Geom |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
(1) Holonomy and Gauss curvature, Hopf-Poincare, Gauss-Bonnet, Moving Frames and Applications: Clifford Tori, Lorentz Model, Degree theorems and vector fields.
(2) Select topics from the following: Isoperimetric Inequalities, Jacobi fields and Synge theorem, Space forms. The course basically treats the two dimensional surfaces, but many concepts may be easily extended to higher dimensional Riemannian manifolds.
|
課程目標 |
希望這門課程,成為跨入幾何專業的橋樑,更重要的是培養幾何直觀。 |
課程要求 |
大三上學期幾何課、線性代數及高等微積分有關Stokes定理與反函數定理之部分。
*Grading scheme:
依上課參加討論的表現,及期末報告而定。這是選修課,我希望修課者基於自己的興趣來學東西。在分數的壓力下,我不相信學到的東西會有多大的價值。
|
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Huang,W.: A Rapid Course on Global Surface theory, 收錄於微分幾何與活動標架法前卷。
John Milnor: Topology from the Differentiable Viewpoint.
Robert Ossermann: The Isoperimetric Inequality, Bulletin of the Amer.Math.Soc
Some more related papers
|
指定閱讀 |
|
評量方式 (僅供參考) |
|
週次 |
日期 |
單元主題 |
第1週 |
2/22 |
Review of Surface Theory |
第2週 |
3/01 |
Review of Surface theory(II);Hopf-Poincare Thm in high dimensions |
第3週 |
3/08 |
(i)Lecture Part A, $1-9: holomomy and Euler number; (ii)Hopf-Poincare in High dimensions,including a sketch of Morse Index theorem and a topological proof of the fundamental thm of algebra-following John Milnor. |
第4週 |
3/15 |
$9與 $10:Gauss equation and Codazzi eq.. ; Topics:Combinatorial version on Gauss- Bonnet, Morse Index and Gauss Theorema Egregium. |
第5週 |
3/22 |
先用組合觀點重看 Gauss-Bonnet Thm, Morse Index Thm 及 Gauss Theorema Egregium; 再討論 moving frames in Euclidean spaces. |
第6週 |
3/29 |
Structure Equations of Surfaces in R^3.
Idea of Chern's intrinsic proof of Gauss-Bonnet Theorem on Surfaces. Sphere Bundles and connection forms. |
第7週 |
4/05 |
春假 |
第8週 |
4/12 |
開放討論兼複習 |
第9週 |
4/19 |
Using moving frames to compute Riemann curvature tensor on Clifford torus and hyperbolic model ;The converse of homotopy degree theorem and counter examples. |
第10週 |
4/26 |
Differentiable manifolds;tangent vectors as operators; framed Cobordism, Pontryagin manifolds. |
第11週 |
5/03 |
From ODE to PDE; Lie bracket and Lie derivatives;Various integrability conditions(I). |
第12週 |
5/10 |
Various integrabilty conditions(II); Frobenious integration theorem. |
第13週 |
5/17 |
The birth of Riemannian geometry--by finding integrability condition for flat metrics and thus introducing Riemann curvature tensor; Fundamental theorem of surface theory and it's extention to higher dimensions(I). |
第14週 |
5/24 |
Affine manifold,covariant derivatives verse Lie derivatives; Equations of parallelism and of geodesics,Equivalence of parallelism and affine connection; Tensors and tensor fields, torsion tensor. |
第15週 |
5/31 |
Connection and metrics, Curvature tensor in modern form; Second Variation of geodesics, Synge theorem, Hopf- Rinow theorem, Frankel theorem. |
第16週 |
6/07 |
Conjugate locus and Cut locus. Jacobi fields and its construction. |
第17週 |
6/14 |
Minimization of Energy functional by Jacobi fields. Global theory of length minimization. Applications to global geometry of Riemannian manifolds: Theorems of Bonnet-Myer and Hadamard. |
|