課程名稱 |
迴歸分析 Regression Analysis |
開課學期 |
103-1 |
授課對象 |
理學院 數學研究所 |
授課教師 |
陳 宏 |
課號 |
MATH7606 |
課程識別碼 |
221 U3940 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期一7,8(14:20~16:20)星期二7(14:20~15:10) |
上課地點 |
天數305天數305 |
備註 |
總人數上限:20人 外系人數限制:15人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1031MATH7606_reg |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Multiple regression and analysis of variance are the most often used statistical tools in applications.
0. Review of Basics.
1. Motivating Examples and Model Construction.
2. Simple and Multiple Linear Regressions.
3. Problems and Remedies - normality, unequal variances, correlated errors, outliers and influential observations, and multicollinearity.
4. More Complicated Models.
5. Generalized Linear Model.
(http://www.springerlink.com/content/nujt764l16289558/fulltext.pdf)
|
課程目標 |
1. Give you some experience with basic regression techniques that you can apply in your research.
2. Expose you to situations where regression analysis is useful (and perhaps not useful).
3. Give you enough understanding that you can evaluate regression in papers your read. (it requires you to know how regression works to be able to evaluate a regression solution in a particular research situation.)
|
課程要求 |
calculus, one semester of linear algebra (matrix theory), some programming experience, one semester introductory probability, and one semester mathematical statistics (Statistical Concepts: Random variables, normal and t distributions, mean and variance of a linear combination of random variables, hypothesis-testing including the concepts of significance level and p-value, t-tests and confidence intervals, sampling error, and the standard error of the mean.)
Depth of understanding comes from a systematic use of tools from linear algebra such assubspaces, projections, and matrix decompositions that allows an astonishing variety of applications to be comprehended via a small number of geometrical pictures and algebraic manipulations. Practical understanding comes from broad experience with and probing of the methods on particular data sets through use of a flexible computer data analysis language, which for us, will be R.
|
預期每週課後學習時數 |
|
Office Hours |
每週五 15:30~17:30 每週二 16:30~17:30 每週一 14:00~15:00 備註: 第一,二個為陳宏老師時間, 地點在天數465; 第三個為助教陳立榜時間,地點在天數538 |
參考書目 |
Rao, C. R. and Toutenburg, H. (1999). Linear Models: Least Squares and
Alternatives. Second Edition. Springer.
Grob, J. (2003). Linear Regression. Springer.
Ramsey, F. L. and Schafer, D. W. (2002). The Statistical Sleuth – A Course in
Methods of Data Analysis. Second Edition. Duxbury.
Sheather, S. (2005) A Modern Approach to Regression with R. 本校電子書
|
指定閱讀 |
Textbook: Applied Linear Regression, 3rd Ed. 電子書http://onlinelibrary.wiley.com/book/10.1002/0471704091
Sanford Weisberg, published by Wiley/Interscience in 2005 (ISBN 0-471-66379-4).
Computing Primer for Applied Linear Regression, 4th Edition, Using R
Version of December 9, 2013 Sanford Weisberg http://z.umn.edu/alrprimer. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Homework |
20% |
|
2. |
Quiz |
20% |
Three Quizzes |
3. |
Midterm |
30% |
|
4. |
Final |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
09/15 |
Wednesday: Review needed language and tool of probability and statistics and give an introduction of regression analysis |
第2週 |
09/22 |
Simple Linear Regression
Tuesday: Finish up Chapter 1 and demo on setting up R-program to do linear regression, Finish the derivation of LS estimate and show that the estimator of $\beta_1$ is consistent. (Study A2.1~A2.3, A3.) Friday: Finish 2.3~2.6.
加退選截止 |
第3週 |
09/29 |
Simple Linear Regression
|
第4週 |
10/06 |
Finish Simple Linear Regression and start on Multiple Linear Regression Multiple Regression |
第5週 |
10/13 |
Multiple Linear Regression |
第6週 |
10/20 |
Quiz 1: (Matrix representation, matrix derivative, constrained optimization, asymptotic analysis of linear combination of random variables, residual and scatter plot)
Drawing Conclusions (in Regression Analysis)
Emphasize on the last section on resampling method and measurement error in regressors |
第7週 |
10/27 |
Weights, Lack of Fit, and More |
第8週 |
11/03 |
Polynomials and Factors;
|
第9週 |
11/10 |
Residuals, 期中考 |
第10週 |
11/17 |
Residuals; 彈性時間 |
第11週 |
11/24 |
Residuals |
第12週 |
12/01 |
Regression Diagnostics: Residuals |
第13週 |
12/08 |
Transformations; Variable Selection
停修申請截止 |
第14週 |
12/15 |
Variable Selection, Data can be download from www.itl.nist.gov/div898/handbook/pmd/
section6/pmd621.htm |
第15週 |
12/22 |
Nonlinear Regression; Logistic Regression |
第16週 |
12/29 |
Logistic Regression |
第17週 |
01/05 |
Outliers and Influence; Review |
第18週 |
01/12 |
期末考: January 12th (Tuesday) |
|