課程名稱 |
數值線性代數 Numerical Linear Algebra |
開課學期 |
102-1 |
授課對象 |
理學院 應用數學科學研究所 |
授課教師 |
王偉仲 |
課號 |
MATH5411 |
課程識別碼 |
221 U4210 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期二7,8(14:20~16:20)星期四7(14:20~15:10) |
上課地點 |
天數201天數201 |
備註 |
總人數上限:30人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1021nla |
課程簡介影片 |
|
核心能力關聯 |
本課程尚未建立核心能力關連 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This course covers both basic and state-of-the-art concepts, algorithms, theories, and implementations in numerical linear algebra. Students will learn and practice the subjects from the viewpoints of application, mathematics, and computing. We plan to cover the following topics.
* Fundamentals of scientific computing
- Floating point arithmetic
- Perturbation theory
- Condition number
- Numerical stability
- Roundoff error analysis
- Memory architecture and parallel computer
- Computation and communication
* Linear systems: direct methods
- LU decomposition
- Error analysis (Pivoting and condition number)
- Blocking algorithms for higher performance
- Cholesky decomposition for symmetric positive definite matrices
- Factorization for sparse matrices with reordering
* Least squares problems
- Normal equations
- QR decomposition
- Singular value decomposition (SVD)
- Orthogonal transformations (Householder, Givens rotations, others)
* Linear systems: iterative methods
- Stationary iterative methods (Jacobi, Gauss-Seidel, SOR, SSOR)
- Projection operators
- Fundamentals of project methods
- Arnoldo's method
- Conjugate method (CG)
- Generalized Minimal Residual (GMRES)
- Other Krylov methods (BiCG, QMR, CGS, Bi-CGSTAB)
- Preconditioning techniques
* Eigenvalue problems
- Rayleigh quotient based methods |
課程目標 |
The goals of this course are (i) to provide theoretical insight and computational hands-on experience in numerical linear algebra and (ii) to guide students to conduct researches in selected topics. With the training of the course, we expect the students can choose efficient algorithms and software to solve their problems and have enough backgrounds to develop new methods and tools. |
課程要求 |
Linear Algebra, Programming Language (e.g. MATLAB, C, C++, or CUDA), Introduction to Computational Mathematics |
預期每週課後學習時數 |
|
Office Hours |
|
指定閱讀 |
(1) Applied Numerical Linear Algebra, James W. Demmel, SIAM, 1997
(2) Iterative Methods for Sparse Linear Systems, 2nd Edition, Yousef Saad, 2003 (http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf)
(3) Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, Richard Barrett et al., SIAM, 1994 |
參考書目 |
- Matrix Computations, Fourth Edition, Gene H. Golub and Charles F. Van Loan, SIAM, 2013
(http://www.ec-securehost.com/SIAM/JH01.html)
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Homework and class participance |
30% |
|
2. |
Term project |
40% |
|
3. |
Class notes and concept maps |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/10,9/12 |
Introduction, source of error and error analysis. |
第2週 |
9/17,9/19 |
Perturbation analysis, condition number, stability and floating point system. |
第3週 |
9/24,9/26 |
Perturbation analysis, relative error and LU decomposition. |
第4週 |
10/01,10/03 |
BLAS3 LU decomposition |
第5週 |
10/08,10/10 |
Special linear systems, s.p.d. matrices and Cholesky decomposition. |
第6週 |
10/15,10/17 |
Cholesky decomposition, sparse matrices, perturbation theory for direct method. |
第8週 |
10/29,10/31 |
Linear least square problem (2013/10/29) |
第12週 |
11/26,11/28 |
11/28 Roofline model by 周函融&嚴炳欽 |
第13週 |
12/03,12/05 |
12/03, 12/05 : TIMS Winter School for Scientific Computing |
第17週 |
12/31,1/02 |
Conjugate gradient method |
|