課程名稱 |
代數幾何專題 TOPICS IN ALGEBRAIC GEOMETRY |
開課學期 |
98-2 |
授課對象 |
理學院 數學系 |
授課教師 |
余正道 |
課號 |
MATH5147 |
課程識別碼 |
221 U5360 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期二4(11:20~12:10)星期四6,7(13:20~15:10) |
上課地點 |
新501新505 |
備註 |
上課時間:
二10:30~11:45;四14:30~15:45。 總人數上限:50人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/982TopAlgGeom |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
The goal of this course is to understand Tate’s work [2] on the comparison between the p-adic etale cohomology and the de Rham cohomology (in degree 1) of a proper smooth variety over a local field (of char 0). This theory can be regarded as an initiation of the whole p-adic Hodge theory in arithmetic geometry, which plays an important role in modern number theory. We plan to fill in the preliminary materials and the details needed to understand the paper of Tate. These include: group schemes, p-divisible groups, Galois cohomology of a local field, and the Hodge-Tate decomposition. Further topics may include: Dieudonne theory, Fontaine’s period rings, p-adic integration, and/or their connections to p-adic differential equations. |
課程目標 |
To get a taste of the language of p-divisible groups and the development of the p-adic Hodge theory. |
課程要求 |
Lectures: Tuesday 9 - 10:15 AM and Thursday 1 - 2:15 PM |
預期每週課後學習時數 |
|
Office Hours |
另約時間 備註: [By appointment] |
參考書目 |
[1] Serre, Groupes p-divisibles (d’apres J. Tate). Seminaire Bourbaki, Exp. No. 318.
[2] Tate, p-divisible groups. 1967 Proc. Conf. Local Fields, pp. 158-183. Springer, Berlin. |
指定閱讀 |
|
評量方式 (僅供參考) |
|