課程名稱 |
代數一 Algebra(Honor Program)(Ⅰ) |
開課學期 |
109-1 |
授課對象 |
理學院 數學系 |
授課教師 |
林惠雯 |
課號 |
MATH5178 |
課程識別碼 |
221 U6520 |
班次 |
|
學分 |
5.0 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期三6,7(13:20~15:10)星期五6,7,8(13:20~16:20) |
上課地點 |
天數101天數101 |
備註 |
此課程研究生選修不算學分。 限學士班學生 且 限學士班二年級以上 總人數上限:45人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1091MATH5178_alge_1 |
課程簡介影片 |
|
核心能力關聯 |
本課程尚未建立核心能力關連 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
When we can find the solutions for a polynomial with rational coefficients using only rational numbers and the operations of addition, subtraction, division, multiplication and finding nth roots, we say that p(x) is solvable by radicals. The main content of this course is to introduce Galois theory and then to study of what conditions a polynomial is solvable by radicals. The related topics in abstract algebra are organized as follows.
1. Group Theory:
Groups; Normal subgroups and Quotient groups; Solvable groups; Group action and Sylow theorems; The fundamental theorem of finitely generated abelian groups.
2. Ring Theory:
EDs, PIDs and UFDs; Polynomial rings.
3. Field Theory:
Field extensions, the Fundamental theorem of Galois theory, Finite fields, Solution by radicals, Abelian extension, Kummer extension, Calculations of Galois groups. |
課程目標 |
Fundamental to all areas of mathematics, algebra provides the cornerstone for the student's development.
In this course, in addition to the basic concepts, advanced material will be introduced. We would like to give students an insight into more advanced algebraic topics. Moreover, for students who are interested in various related fields, we hope to equip students with a solid foundation in algebra. |
課程要求 |
Linear algebra I & II |
預期每週課後學習時數 |
|
Office Hours |
備註: 星期一下午 3:20 ~ 4:20 |
參考書目 |
Dummit-Foote, Abstract Algebra
N. Jacobson, Basic Algebra I , 2nd edition
M. Artin, Algebra, 2nd edition
Knapp, Basic Algebra 2nd Edition.
(作者網頁下載 :http://www.math.stonybrook.edu/~aknapp/download.html)
Knapp, Advanced Algebra.
(作者網頁下載 :http://www.math.stonybrook.edu/~aknapp/download.html) |
指定閱讀 |
Serge Lang, Algebra, 3rd edition
(使用台大網路可下載:https://link.springer.com/book/10.1007%2F978-1-4613-0041-0) |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
平常成績 |
30% |
作業和演習課(助教評分) |
2. |
期中考 |
35% |
|
3. |
期末考 |
35% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/16,9/18 |
Motivation and basic notion / Symmetric groups and Dihedral groups ; Homework 1 / Homework 2 (修訂版9/21) |
第2週 |
9/23,9/25 |
Cosets and Quotient groups / Isomorphism theorem ; Homework 3 / Homework 4 |
第3週 |
9/30,10/02 |
Solvable groups / 中秋連假 ; Homework 5 |
第4週 |
10/07,10/09 |
Cyclic groups / 國慶補假 ; Homework 6 |
第5週 |
10/14,10/16 |
Group actions / Simpleness of A_n and Class formula ; Homework 7 / Homework 8 |
第6週 |
10/21,10/23 |
Sylow theorems / Direct products & Semidirect products ; Homework 9 (修訂版10/21) / Homework 10 (修訂版10/22) |
第7週 |
10/28,10/30 |
Structure of finite abelian groups / Ideals and Isomorphism theorems (Chinese remainder theorem) ; Homework 11 / Homework 12 (修訂版10/30) |
第8週 |
11/04,11/06 |
Localization / ED +PID + UFD ; Homework 13 / Homework 14 |
第9週 |
11/11,11/13 |
Gauss lemmas and Gauss primes / 期中考 |
第10週 |
11/18,11/20 |
Algebraic extensions / Algebraic closures ; Homework 15 / Homework 16 |
第11週 |
11/25,11/27 |
Normal extensions / Separable extensions ; Homework 17 / Homework 18 |
第12週 |
12/02,12/04 |
Finite fields / Fundamental theorem of Galois theory ; Homework 19 / Homework 20 |
第13週 |
12/09,12/11 |
Examples / Applications ; Homework 21 / Homework 22 |
第14週 |
12/16,12/18 |
Cyclotomic extensions / Norm and Trace ; Homework 23 / Homework 24 |
第15週 |
12/23,12/25 |
Cyclic extensions / Abelian Kummer extensions ; Homework 25 / Homework 26 |
第16週 |
12/30,1/01 |
Solution by radicals / 元旦 ; Homework 27 |
第17週 |
1/06,1/08 |
Galois resolvent / Applications ; Homework 28 |
第18週 |
1/15 |
期末考 |
|