課程資訊
課程名稱
代數一
Algebra(Honor Program)(Ⅰ) 
開課學期
111-1 
授課對象
理學院  數學系  
授課教師
莊武諺 
課號
MATH5178 
課程識別碼
221 U6520 
班次
 
學分
5.0 
全/半年
半年 
必/選修
選修 
上課時間
星期三6,7(13:20~15:10)星期五6,7,8(13:20~16:20) 
上課地點
天數101天數101 
備註
初選不開放。此課程研究生選修不算學分。
限學士班學生 且 限學士班二年級以上
總人數上限:30人 
 
課程簡介影片
 
核心能力關聯
本課程尚未建立核心能力關連
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

groups, rings, fields, Galois theory, modules, group representations.

class recording: (usually one to two weeks behind class schedule, due to video editing.)
https://www.youtube.com/watch?v=oDurTPRF_M4&list=PLQqeHUV7RZ2OmZ2AjTbTAu-n04LfH_Mjt&ab_channel=ZenTsai 

課程目標
We will introduce basic concepts in algebra, including groups, rings, and fields, and cover more advanced topics. We hope to equip students with a solid foundation in algebra. 
課程要求
此課程之修課要求為需修過數學系微積分及線性代數、或修過線性代數且成績達B以上。選修授權碼將於開學後給予(請與授課教師email聯繫)。 
預期每週課後學習時數
 
Office Hours
每週四 13:30~15:30 備註: Office hour at Astro-Math RM403. 
參考書目
Jacobson, Basic Algebra I & II, 2nd edition.
Dummit and Foote, Abstract Algebra, 3rd edition.
Knapp, Advanced Algebra, digital 2nd edition. (available on the author's website)
Other references will be supplemented along the way.  
指定閱讀
Lang, Algebra, 3rd edition. (available online through NTU library)
https://link.springer.com/book/10.1007/978-1-4613-0041-0 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
homework 
30% 
 
2. 
midterm 
35% 
 
3. 
final 
35% 
 
 
課程進度
週次
日期
單元主題
第1週
09/07, 09/09  09/07: basic notion, symmetry groups.
09/09: no class. 
第2週
09/14, 09/16  09/14: cosets, normal subgroups, quotient groups, isomorphism theorem. HW1 due.
09/16: isomorphism theorem, tower of subgroups.  
第3週
09/21, 09/23  09/21: butterfly lemma, Jordan-Holder theorem. HW2 due.
09/23: Jordan-Holder theorem, cyclic groups. HW3 due. 
第4週
09/28, 09/30  09/28: no class.
09/30: group action, simpleness of A_n. HW4 due. 
第5週
10/05, 10/07  10/05: simpleness of A_n, Sylow theorems.
10/07: Sylow theorems, HW5 due.  
第6週
10/12, 10/14  10/12: semidirect products. HW6 due.
10/14: structure theorem of finite abelian groups.  
第7週
10/19, 10/21  10/19: ring isomorphism theorem. HW7 due.
10/21: Chinese remainder, localization. 
第8週
10/26, 10/28  10/26: ED, PID, UFD. HW8 due.
10/28: midterm. 
第9週
11/02, 11/04  11/02: Gauss lemma, criteria for irreducibility. HW9 due.
11/04: algebraic extensions. 
第10週
11/09, 11/11  11/09: algebraic closures. HW10 due.
11/11: algebraic closures, normal extensions. 
第11週
11/16, 11/18  11/16: separable extensions.
11/18: primitive element theorem, finite fields. HW11 due. 
第12週
11/23, 11/25  11/23: Galois theory. HW12 due.
11/25: Galois theory. 
第13週
11/30, 12/02  11/30: examples and applications of Galois theory, roots of unity, cyclotomic extensions. HW13 due.
12/02: no class. (台大運動會) 
第14週
12/07, 12/09  12/07: norms and traces. HW14 due.
12/09: purely inseparable extensions, cyclic extensions. 
第15週
12/14, 12/16  12/14: radical extensions, solvable by radicals. HW15 due.
12/16: final.  
第16週
12/21  12/21: abelian Kummer theory.