課程資訊
課程名稱
代數一
Algebra(Honor Program)(Ⅰ) 
開課學期
106-1 
授課對象
理學院  數學系  
授課教師
余正道 
課號
MATH5178 
課程識別碼
221 U6520 
班次
 
學分
5.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一2,3,4(9:10~12:10)星期四8,9(15:30~17:20) 
上課地點
天數101天數101 
備註
此課程研究生選修不算學分。
限學士班學生
總人數上限:44人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1061MATH5178 
課程簡介影片
 
核心能力關聯
本課程尚未建立核心能力關連
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

More the contents, please refer the standard syllabus available in
http://www.math.ntu.edu.tw/sites/default/files/imce/documents/courses/honor_course_ syllabus_2016.pdf 

課程目標
Theory of groups, linear representations of finite groups, applications to fields 
課程要求
 
預期每週課後學習時數
 
Office Hours
每週五 13:20~14:10
每週三 13:30~14:30
每週一 15:00~16:00 備註: Monday: Astro-Math 461, Wednesday: Astro-Math 430, Friday: Astro-Math 407 
指定閱讀
Textbook: Knapp, Basic algebra. Digital 2nd edition. Available on the author's website. 
參考書目
Dummit and Foote, Abstract algebra. 3rd edition. 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
9/11, 9/14  Examples of groups from previous courses, symmetric, dihedral, alternating, cyclic groups 
Week 2
9/18, 9/21  Quotient,
relations between group and its quotient (isomorphism theorems),
splitting of quotient (semidirect product) 
Week 3
9/25, 9/28, 9/30  End of semidirect product,
Structure of finite abelian groups (statement),
p-groups.
Notice that we have classes on Saturday: [Digression to field extension]. 
Week 4
10/02, 10/05  Sylow theorems,
simpleness of A_n,
composition series 
Week 5
10/12  Structure of finitely generated abelian groups (proof) 
Week 6
10/16, 10/19  Quiz (10/16, 9:10 - 10:00)
[Digression: Modules over PID],
Arbitrary product of groups,
Categories and functors 
Week 7
10/23, 10/26  Free groups, free product 
Week 8
10/30, 11/02  Midterm.
[Digression: Free groups/products in topology] 
Week 9
11/06, 11/09  Characters: finite abelian case,
Schur's lemma, averaging trick.
TA section: Chinese Remainder Theorem 
Week 10
11/13, 11/16  Schur orthogonality,
class functions and characters
TA section: irreducible representation of A_4 
Week 11
11/20, 11/23  Group extension.
Quiz 2 
Week 12
11/27, 11/30  [Digression: group cohomology as a derived functor],
induced representation 
Week 13
12/04, 12/07  Convolution,
Burnside's theorem
TA section: integral closure of Z 
Week 14
12/11, 12/14  Quiz 3.
Hilbert basis theorem,
division algorithm,
Grobner basis 
Week 15
12/18, 12/21  Buchberger's criterion,
Grobner basis and elimination,
examples.
TA section: Frobenius reciprocity 
Week 16
12/25, 12/28  Final.
[Miscellaneous remarks] some questions left in class, Kunneth, etc.