課程名稱 |
數值線性代數 Numerical Linear Algebra |
開課學期 |
101-1 |
授課對象 |
理學院 數學研究所 |
授課教師 |
薛克民 |
課號 |
MATH5411 |
課程識別碼 |
221 U4210 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期一@,7,8(~16:20) |
上課地點 |
天數305 |
備註 |
總人數上限:30人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1011nla |
課程簡介影片 |
|
核心能力關聯 |
本課程尚未建立核心能力關連 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This is an introductory graduate level course on numerical linear algebra.
Topics to be covered will include:
1. Review of relevant linear algebra
(a) Vector and matrix norms
(b) Orthogonality
(c) Spectral theory of matrices
2. Direct methods for linear systems
(a) Perturbation theory
(b) Gaussian elimination
(c) Stability of Gaussian elimination
(d) Cholesky method
(e) QR factorization method
3. Least square problems
(a) Normal equation method
(b) QR factorization method
(c) Householder algorithm
(d) Conditioning of least square problems
(e) Stability of least square algorithms
4. Iterative methods for linear systems
(a) Jacobi, Gauss-Seidel, and relaxation methods
(b) Steepest descent methods
(c) Conjugate gradient method
(d) variant Krylov subspace methods
5. Nonsymmetric eigenvalue problems
(a) Power method
(b) Inverse iteration
(c) Orthogonal iteration
(d) QR iteration
6. Symmetric eigenvalue problems
(a) Tri-diagonal QR iteration
(b) Rayleigh quotient iteration
(c) Bisection and inverse iteration
(d) Jacobi's method
7. Singular value decomposition
(a) QR iteration
(b) Jacobi's method
(c) Application to rank-deficient least square problems
Continuation of this course to next semester will be on numerical optimization. |
課程目標 |
The goal of this course is to provide theoretical insight and to
develop practical skills for solving large scale linear algebra problems
numerically. |
課程要求 |
先修課程: Linear Algebra & Introduction to Computational Mathematics |
預期每週課後學習時數 |
|
Office Hours |
每週三 11:00~12:00 |
指定閱讀 |
|
參考書目 |
1. G. Allaire and S. M. Kaber, Numerical Linear Algebra, Springer 2008. (e-book)
2. J. W. Demmel, Applied Numerical Linear Algebra, SIAM 1997.
3. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, 3rd ed., 1996.
4. A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM 1997.
5. L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM 1997. (e-book)
6. H. A. van der Vorst, Iterative Methods for Large Linear Systems, 2002. (e-book)
7. W.-W. Lin, Lecture notes of matrix computations, 2010. (e-lecture) |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Final |
40% |
|
2. |
Homework |
60% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
9/10,9/12 |
Fundamentals of matrix analysis |
第2週 |
9/17,9/19 |
vector space & norms |
第3週 |
9/24,9/26 |
LU & error analysis |
第4週 |
10/01,10/03 |
PLU & Cholesky factorization |
第5週 |
10/08,10/10 |
Least-squares problems |
第6週 |
10/15,10/17 |
Householder triangularization |
第7週 |
10/22,10/24 |
Gram-Schmidt's method &
Conditioning of least-square problems |
第8週 |
10/29,10/31 |
Updating QR & basic iterative method |
第9週 |
11/05,11/07 |
Conjugate gradient method |
|