Course Information
Course title
Quantum Mechanics (1)(tigp) 
Semester
111-1 
Designated for
COLLEGE OF ENGINEERING  TIGP-MOLECULAR SCIENCE AND TECHNOLOGY  
Instructor
CHENG-WEI CHIANG 
Curriculum Number
Phys8067 
Curriculum Identity Number
222ED5061 
Class
 
Credits
3.0 
Full/Half
Yr.
Full 
Required/
Elective
Elective 
Time
Thursday 7,8,9(14:20~17:20) 
Remarks
The upper limit of the number of students: 20.
The upper limit of the number of non-majors: 2. 
 
Course introduction video
 
Table of Core Capabilities and Curriculum Planning
Table of Core Capabilities and Curriculum Planning
Course Syllabus
Please respect the intellectual property rights of others and do not copy any of the course information without permission
Course Description

In this semester, we will cover basics of quantum mechanics. 

Course Objective
Get familiar with quantum mechanical concepts, operators, Schroedinger equation, and angular momentum algebra. 
Course Requirement
quantum physics, linear algebra, classical mechanics 
Student Workload (expected study time outside of class per week)
 
Office Hours
 
Designated reading
J.J. Sakurai and Jim J. Napolitano, Modern Quantum Mechanics, 2nd Edition (Pearson Prentice Hall 2004) 
References
Eugen Merzbacher, Quantum Mechanics, 3rd Edition (Wiley 1997)
Ramamurti Shankar, Principles of Quantum Mechanics, 2nd Edition (Plenum Press 2008)
Steven Weinberg, Lectures on Quantum Mechanics, 2nd Edition (Cambridge University Press 2015) 
Grading
 
No.
Item
%
Explanations for the conditions
1. 
Midterm Exam 
50% 
 
2. 
Final Exam 
50% 
 
 
Progress
Week
Date
Topic
Week 1
9/8/2022  Quantum Logic, Stern-Gerlach Experiment, Dirac Bra-Ket Notation 
Week 2
9/15/2022  Operators, the Matrix Representations, Spin, Commutators 
Week 3
9/22/2022  Function of Operators, Observables, Expectation Value 
Week 4
9/29/2022  Uncertainty Relations, Quantization Conditions, Change of Representations, Time-Evolution, Schroedinger Equation, Stationary States 
Week 5
10/6/2022  Correlation Amplitude, Heisenberg Formalism, Ehrenfest’s Theorem, Simple Harmonic Oscillator 
Week 6
10/13/2022  Fock Space/States, Classical Limits, WKB Approximation 
Week 7
10/20/2022  Path Integral 
Week 8
10/27/2022  Gauge Theory
 
Week 9
11/3/2022  Midterm Exam 
Week 10
11/10/2022  Rotation, Angular Momentum  
Week 11
11/17/2022  Pure/Mixed Ensembles, Density Operator 
Week 12
11/24/2022  Orbital Angular Momentum 
Week 13
12/1/2022  Addition of Angular Momentum
 
Week 14
12/8/2022  Clebsche-Gordon Coefficients, Rotation Matrices 
Week 15
12/15/2022  Tensor Operators, Wigner-Eckart Theorem 
Week 16
12/22/2022  Final Exam