課程名稱 |
高等物理化學專論一 Discussion in Advanced Physical Chemistry (Ⅰ) |
開課學期 |
105-1 |
授課對象 |
理學院 化學所化學組 |
授課教師 |
陸駿逸 |
課號 |
Chem8031 |
課程識別碼 |
223ED1310 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期三2,3,4(9:10~12:10) |
上課地點 |
|
備註 |
本課程以英語授課。上課教室:化121教室。
本班英文授課。 限博士班 且 限本系所學生(含輔系、雙修生) 總人數上限:20人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1051Chem8031_sm |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This course covers the principles and methods of equilibrium statistical mechanics for applications to chemical physics problems. The lectures will be divided into three parts: a short review of thermodynamics principles, the concepts of ensemble theory and the applications to gas, liquid, solution and solid systems. The final part will introduce the phase transition and the theory of Brownian motion.
Planned topics: laws of thermodynamics, thermal equilibrium and temperature, ensemble theory, entropy, non-interacting systems (gas and solid), chemical equilibrium, imperfect gases, classical liquids, ionic and non-ionic solutions, Ising models. Langevin equation and Brownian motion. |
課程目標 |
This course aims to introduce basic concepts of equilibrium statistical mechanics for physical chemistry in the graduate level. |
課程要求 |
待補 |
預期每週課後學習時數 |
|
Office Hours |
每週三 13:20~15:20 備註: TA office hours @B366 |
指定閱讀 |
待補 |
參考書目 |
Textbooks:
Introduction to Modern Statistical Mechanics, David Chandler, Oxford University Press.
Statistical Physics of Particles, Tehran Kardar, Cambridge University Press.
References:
Statistical Mechanics, Donald Allan McQuarrie, University Science Books; 2nd edition.
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
final exam |
50% |
|
2. |
midterm exam |
50% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
|
Problem 10 of Kardar chapter 1 |
第6週 |
|
Problems 1, 2 of Kardar chapter 4 |
第7週 |
|
Exercises 4.4, 4.5 of Chandler |
第13週 |
|
Exercise 5.21 of Chandler |
第14週 |
|
Exercise 5.22 of Chandler |
第15週 |
|
Exercises 5.15, 5.16, 5.17 of Chandler |
第16週 |
|
Starting from the probability integral relation, derive the Kramer's equation. |
|