課程名稱 |
高等物理化學專論二 Discussion in Advanced Physical Chemistry (Ⅱ) |
開課學期 |
108-2 |
授課對象 |
理學院 化學所化學組 |
授課教師 |
陳玉如 |
課號 |
Chem8032 |
課程識別碼 |
223ED1320 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期一2(9:10~10:00)星期三3,4(10:20~12:10) |
上課地點 |
|
備註 |
本課程以英語授課。上課教室:化121教室。 限博士班 且 限本系所學生(含輔系、雙修生) 總人數上限:20人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1082Chem8032_ |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This lecture provide introductory quantum mechanics and advanced quantum chemistry course.
Introductory quantum mechanics course will discuss a method of how quantum mechanics can be applied to describe the elementary motions of molecules such as translation, rotation and vibration.
Advanced quantum chemistry course will discuss both several important approximations and models that are essential when molecules are treated fully quantum mechanically:
such as LCAO-MO, Valence-bond model, Fermi-Golden rule, Selection rules of transitions, Condon Approximation, Franck-Condon principle, and etc. |
課程目標 |
After the lectures:
1. you will learn the essential concepts, models, and approximations that are related to quantum
mechanics of molecules from the first principle.
2. you will be able to understand basics of many-electron systems
3. In addition, we will be able to understand basic concepts of frontier physical chemistry
problems. |
課程要求 |
The students are familiar with the following concepts and skill
Basic classical mechanics
Basic mathematics skills (Integrations, derivatives, differential equations, vectors) |
預期每週課後學習時數 |
|
Office Hours |
|
參考書目 |
Introduction to Quantum Mechanics with Applications to Chemistry
L. Pouling and E. B. Wilson
Quantum Chemistry
H. Eyring, J. Walter, and G. Kimball
Elements of quantum mechanics
M. D. Fayer |
指定閱讀 |
Physical Chemistry
A Molecular Approach
by Donald A. McQuarrie and John D. Simon |
評量方式 (僅供參考) |
|
週次 |
日期 |
單元主題 |
第1週 |
2/17,2/19 |
Review of Classical Mechanics
Newton's equation of motion (Harmonic oscillator) |
第2週 |
2/24,2/26 |
Lagrange’s equation of Motion
Hamilton's equation of motion (Harmonic oscillator)
Classical Mechanics State and phase space |
第3週 |
3/02,3/04 |
Duality of wave and particle
Schrodinger equation for a free quantum particle
|
第4週 |
3/09,3/11 |
Quantum mechanics of a particle in a box |
第5週 |
3/16,3/18 |
Quantum mechanics of harmonic oscillator |
第6週 |
3/23,3/25 |
Quantum mechanics of harmonic oscillator |
第7週 |
3/30,4/01 |
Angular momentum
Quantum Mechanics of 2D diatomic molecule |
第8週 |
4/06,4/08 |
Quantum mechanics of 3D diatomic molecule
Rigid rotator approximation |
第9週 |
4/13,4/15 |
Quantum mechanics of Hydrogen atom |
第10週 |
4/20,4/22 |
Perturbation theory and a few examples
Van der Waals force
Ligand field theory |
第11週 |
4/27,4/29 |
Quantum mechanics of chemical bonding H2+
Variation principle and LCAO-MO |
第12週 |
5/04,5/06 |
Born-Oppenheimer Adiabatic Approximation |
第13週 |
5/11,5/13 |
Quantum mechanics of many-electron system
Many electron wave function -- Slater determinant
Problems in LACO approach
Hartree-Fock and post Hartree-Fock |
第14週 |
5/18,5/20 |
Molecular spectroscopy
Fermi-Golden Rule |
第15週 |
5/25,5/27 |
Vibration-rotation transition |
第16週 |
6/01,6/03 |
Electronic transition |
|