課程資訊
課程名稱
統計生態學與程式語言應用
Computer Intensive Statistics in Ecology 
開課學期
109-2 
授課對象
學程  永續資源學程  
授課教師
謝志豪 
課號
Ocean5052 
課程識別碼
241EU1920 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四2,3,4(9:10~12:10) 
上課地點
 
備註
本課程以英語授課。教室地點:計中110教室。 與張以杰合授
總人數上限:25人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1092EcoStat 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

This is an advanced course intended for senior undergraduate and graduate students with knowledge of basic statistics including random variables, analysis of variance, regression analysis, and rank-based non-parametric statistics. We will discuss several computer-intensive statistical methods. We will discuss the theory, assumption, and application of these methods in ecological problems. 

課程目標
The course is designed for hand-on work. Students need to get familiar with at least one computer language to do the statistics. Most of work can be done with R or MatLab, but any other programming language will do equally well. Sometimes, we will use well-developed software when the computation is too complicated and beyond the basic level. There will be dedicated time every week for students to present their works and to discuss the application of these methods on real world problems. 
課程要求
Solve homework problems every week. There will be dedicated time every week for students to present their works and to discuss the application of these methods on real world problems. 
預期每週課後學習時數
 
Office Hours
另約時間 
指定閱讀
 
參考書目
No textbook. Handouts and primary journal articles will be provided. 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
2/25  Introduction to R programming and plotting (Yi-Jay)
📷📷📷 First lecture online stream: https://youtu.be/Pbh4rKbH6CA 
Week 2
3/04  Random variables, distribution, random number generator, statistical identity (Zac)

📷📷📷 lecture online stream: https://youtu.be/LXs5mVmQQMU 
Week 3
3/11  Bootstrap and Jackknife (Zac)
📷📷📷 lecture online stream:
https://youtu.be/X7vZbAebkmw 
Week 4
3/18  Bootstrapped confidence limits (Zac)
📷📷📷 lecture online stream:
https://youtu.be/paHEeMuOlfw 
Week 5
3/25  Permutation (Zac)
📷📷📷 lecture online stream:
https://youtu.be/dGuO3fogxdc 
Week 6
4/01  Holiday  
Week 7
4/08  Minimization (Zac)
📷📷📷 lecture online stream:
https://www.youtube.com/watch?v=NWBbaht_nKk 
Week 8
4/15  Classification 1 (Yi-Jay)
📷📷📷 lecture online stream:
https://www.youtube.com/watch?v=m8r_larFBSE 
Week 9
4/22  Classification 2 (Yi-Jay)
📷📷📷 lecture online stream:
https://www.youtube.com/watch?v=3sWUX1F4w80 
Week 10
4/29  海洋大會 (no class) 
Week 11
5/06  Dimension reduction methods 1 (Hsiao-Hang)
📷📷📷 lecture online stream:
https://www.youtube.com/watch?v=rdQ-BlCXw_s 
Week 12
5/13  Dimension reduction methods 2 (Hsiao-Hang)
📷📷📷 lecture online stream:
https://www.youtube.com/watch?v=dHV866Ehbwo 
Week 13
5/20  Maximal likelihood (Yi-Jay)
📷📷📷 lecture online stream:
https://youtu.be/Xt4cQ96Xsxo 
Week 14
5/27  Model selection (Yi-Jay)
📷📷📷 lecture online stream:
https://youtu.be/hplixkIqMs4 
Week 15
6/03  Bayesian analysis I (Yi-Jay)
📷📷📷 lecture online stream:
https://youtu.be/cxA5x5jcUHs 
Week 16
6/10  Bayesian analysis II (Yi-Jay)
📷📷📷 lecture online stream:
https://youtu.be/zpEHsvfppEc 
Week 17
6/17  Neural Network (Zac)
📷📷📷 lecture online stream:
https://meet.google.com/fmv-zwir-quz
Video link:
https://www.space.ntu.edu.tw/navigate/s/0937EFD86C2C41FFBAEF4BC86FCC3CC0QQY 
Week 18
6/24  show final homework solution; no lecture