課程資訊
課程名稱
經濟計量數值方法導論
Introduction to Numerical Methods in Economics and Econometrics 
開課學期
111-2 
授課對象
社會科學院  經濟學系  
授課教師
王泓仁 
課號
ECON5187 
課程識別碼
323 U1070 
班次
 
學分
2.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一7,8(14:20~16:20) 
上課地點
社科306 
備註
限學士班三年級以上 或 限碩士班以上 或 限博士班
總人數上限:30人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

The course introduces basic numerical methods often used in econometrics, quantitative social science, and data science. Topics include random sampling, numerical integration, numerical differentiation, optimization, simulation, and maximum likelihood estimations. The theories are introduced at an accessible level, and the focus is on the application of the methods.

Equally important in this course is introducing students to computer programming using Julia. Students are asked to code functions to implement the numerical methods, and hands-on exercises are given to hone coding skills. Comprehension of the numerical methods and development of programming skills are mutually reinforcing and complementary to one another.

This two-credit course is not intended to provide comprehensive coverage of advanced numerical or programming methods. Rather, it aims to lay a solid foundation for students to tackle computational challenges with confidence by developing their coding and problem-solving skills.

The course will be structured around two weeks of online video lessons, followed by a week of in-class discussions. 

課程目標
Upon completion of this course, students will be able to:

1. grasp basic theories of essential numerical methods;
2. obtain programming skills in modern computer languages;
3. code numerical algorithms and methods to solve empirical problems; and
4. teach themselves to code in other languages in the future. 
課程要求
 
預期每週課後學習時數
2 hours 
Office Hours
另約時間 
指定閱讀
Cameron, A.C. and Trivedi, P.K. (2005) Microeconometrics: Methods and Applications, Cambridge University Press, London.

Judd, K. (1998) Numerical Methods in Economics, MIT Press, Cambridge.

Kochenderfer, M.J., and Wheeler, T.A. (2019) Algorithms for Optimization, MIT Press, Cambridge.

Koziel and Yang (2011) Computational Optimization Methods and Algorithms, Springer, New York. (free download from NTU)

Miranda, M.J., and Fackler, P.L. (2004) Applied Computational Economics and Finance, MIT Press, Cambridge.

Nazarathy and Klog (2021) Statistics with Julia, Springer, New York. (free download from NTU) 
參考書目
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
 
100% 
原則上若該週爲影片教學,則一定有作業,須在一星期內上傳。最低分的兩次作業成績不列入計算,所以不接受任何遲交、補交、或不交作業的理由。總成績由底下幾項成績計算:課堂及網路討論(8%),作業(22%),期中考(25%),期末考(45%)。 
 
針對學生困難提供學生調整方式
 
上課形式
以錄影輔助
作業繳交方式
學生與授課老師協議改以其他形式呈現
考試形式
其他
由師生雙方議定
課程進度
週次
日期
單元主題
第0週
  各週進度請見 2023W_syllabus.pdf