課程資訊
課程名稱
勞動經濟學專題: 實證方法與應用
Topics in Labor Economics: Empirical Methods and Applications 
開課學期
108-2 
授課對象
社會科學院  經濟學研究所  
授課教師
楊子霆 
課號
ECON5163 
課程識別碼
323EU4100 
班次
 
學分
2.0 
全/半年
半年 
必/選修
選修 
上課時間
星期三3,4(10:20~12:10) 
上課地點
社科406 
備註
本課程以英語授課。
限學士班三年級以上 或 限碩士班以上
總人數上限:30人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

課程概述:
This course will survey empirical methods in labor economics. We will focus on recent advances in these methods as well as their empirical applications. The topics will include randomized (field) experiments, matching method, instrumental variables, differences-in-differences method, synthetic controls method, regression discontinuity (kink) design, machine learning method, text mining, and GIS data. The applications in labor economics include labor market discrimination, life-cycle labor supply, social insurance, labor demand, and tax incidence. We will especially focus on the practical implementation of these methods and tips for data management by writing a term paper. After taking this course, students should be able to conduct empirical research independently.


課程簡介影片:
https://causaldatalab.wordpress.com/2020/02/14/topics-in-labor-economics-empirical-methods-and-applications-spring-2020/ 

課程目標
1. Be able to understand and use recent advances in labor economics and empirical methods

2. Be able to implement a good empirical research and evaluate an empirical studies

3. Have a good start of your research 
課程要求
Please visit this website to get more information about this course.

https://causaldatalab.wordpress.com/2020/02/14/topics-in-labor-economics-empirical-methods-and-applications-spring-2020/ 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
待補 
參考書目
Pierre Cahuc, Stephane Carcillo and Andre Zylberberg, Labor Economics, Second Edition
Angrist and Pischke (2016), Mastering Metrics: The Path from Cause to Effect
Angrist and Pischke (2009), Mostly Harmless Econometrics
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani (2017), An Introduction to Statistical Learning with Applications in R 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題