課程資訊
課程名稱
高等統計推論二
Advanced Statistical Inference (Ⅱ) 
開課學期
107-2 
授課對象
社會科學院  經濟學系  
授課教師
 
課號
ECON5089 
課程識別碼
323 U1960 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一5(12:20~13:10)星期四8,9(15:30~17:20) 
上課地點
 
備註
上課教室及資訊依課號MATH7604訊息為主。限選修ECON課號之課程,方可
限學士班三年級以上 或 限碩士班以上
總人數上限:20人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1072ECON5089_ 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Contents:
1. Point Estimation: Review on UMVUE and MLE, Bayesian Point Estimation
3. Test of hypothesis.
4. Interval estimation.
5. Asymptotic methods
6. Topics of Linear model, generalized linear model and logistic model
 

課程目標
The objective of this course is to introduce to the students of theory of inference including estimation, interval estimation and hypothesis testing. Both small and large sample theorems of hypothesis testing, interval estimation, and confidence intervals will cover. Applications to topics such as exponential families, linear models and nonparametric inference will be discussed.
It also provides a necessary basis for students for a further study of other advanced statistical courses.  
課程要求
Advanced statistical inference (I) or equivalent. Please refer to course webpage at ceiba.ntu.edu.tw on advanced Statistical Inference I (1001ASI)
 
預期每週課後學習時數
 
Office Hours
每週四 14:00~15:00
每週一 13:20~14:20 備註: 週一、週四 授課老師 (天文數學大樓465室) ; 週一1:20-2:20PM、週四14:00-15:00、週五3-5PM 助 教 (天文數學館543室) 
指定閱讀
待補 
參考書目
Textbook and References:
1. Casella, G. and Berger, R. L. (2002). Statistical Inference. 2nd ed. Duxbury Press. (Textbook)
2. Rice, J.A. (1995). Mathematical Statistics and Data Analysis. 2nd edition. Duxbury Press.
3. Bickel, P. S. and Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics,
Vol. I, 2nd ed. Prentice Hall.
4. Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd Edition, Springer.
5. Karr, A. F. (1993). Probability. Springer-Verlag.
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Quizzes 
20% 
two quizzes, Each is 10% of course grade.  
2. 
Midterm 
30% 
 
3. 
Final 
30% 
 
4. 
Homeworks 
20% 
 
 
課程進度
週次
日期
單元主題
第1週
  Review on UMVUE and method based on a sufficient and complete statistic. Point Estimation. Information bound and systematic procedure of finding UMVUE. (constrained optimization problem) 
第2週
  extreme value distributions and order statistics, probability inequality, method of mle with many parameters in Euclidean space, Bayesian point estimation and information integration 
第3週
  continuous 
第4週
  classical statistical inference: mle with finitely many parameters in Euclidean space 
第5週
  MLE: consistency and asymptotic normality under compactness parameter space, Bayes estimate (l1 and l2 penalties, lasso versus ridge), Bayes estimate  
第6週
  Quiz, MLE: consistency and asymptotic normality under compactness assumption (part 2) 
第7週
  Incomplete data: MCAR, MAR, Truncation; EM algorithm, Introduction of Bayes estimate, regularization. no class on 4/04 
第8週
  Monday: review; Thursday: midterm  
第9週
  自主學習週  
第10週
  Test of hypothesis: Framework, Neyman-Pearson lemma, Likelihood ratio test, 
第11週
  Wald test, and Score test (asymptotic distribution) , large sample test  
第12週
  Multi-normial distribution with large number of cells (Teaching model: histogram, kernel smoothing) 
第13週
  continue 
第14週
  Quiz 2 (5/20), Interval estimation and interpretation of confidence interval 
第15週
  GLM: generalized linear model and logistic regression model  
第16週
  Wrap up classical statistical estimation.  
第17週
  Topics: smoothing techniques for curve fitting 
第18週
  Monday: office hour, 期末考 final exam