課程資訊
 課程名稱 工程數學下ENGINEERING MATHEMATICS (2) 開課學期 95-2 授課對象 機械工程學系 授課教師 伍次寅 課號 ME2002 課程識別碼 502 20002 班次 02 學分 3 全/半年 全年 必/選修 必修 上課時間 星期一3,4(10:20~12:10)星期三2(9:10~10:00) 上課地點 工綜B01 備註 限本系所學生(含輔系、雙修生)總人數上限：65人 課程簡介影片 核心能力關聯 核心能力與課程規劃關聯圖 課程大綱 為確保您我的權利,請尊重智慧財產權及不得非法影印 課程概述 課號：502 20002 班次：02 主授教授：伍次寅 學分： 3 課程名稱：工程數學 (下) 教科書： `Advanced Engineering Mathematics`, P.V. O`neil, 5th ed. 2003, Thomson Brooks/Cole. 課程大綱： 1. Systems of Linear Differential Equations: homogeneous systems, fundamental matrix, solutions by eigenvalues and eigenvectors, solutions in exponential matrix form, nonhomogeneous systems, method of diagonalization, method of variation of parameters 2. Vector Calculus: vector functions, differentiation of vector functions, curves and surfaces, tangents and normals, integration of vector functions, line integrals, surface integrals, gradient, divergence and curl, Green`s theorem, Gauss` theorem, Stokes` theorem, potential theory 3. Fourier Analysis: Fourier series, convergence of Fourier series, Fourier integrals, Fourier transforms, properties of Fourier transform, complex Fourier transforms, Fourier spectra, power spectra, discrete Fourier transform 4. Orthogonal Expansions: special functions (Legendre, Bessel), orthogonal polynomials, Sturm-Liouville theory, eigenfunction expansions 5. Linear Partial Differential Equations: separation of variables, eigenvalue problems, eigen-solutions, heat equations, wave equations, Laplace equations, Laplace and Fourier transforms for solving boundary-value problems 6. Complex Analysis: complex variables and complex functions, analytic functions, differentiation and integration of complex functions, Cauchy integral theorem, power series, Taylor and Laurent series representation of functions, singularities, residue theorem, multi-valued functions, branch point and branch cut, application on real integrals 成績評量方式： 1. 小考(6至7次) 佔 70% 2. 期末考 佔 30~40% 3. 作業(指定但不予評分) 課程目標 課程要求 預期每週課後學習時數 Office Hours 參考書目 指定閱讀 評量方式(僅供參考)
 課程進度
 週次 日期 單元主題 無資料