課程資訊
課程名稱
工程數學下
Engineering Mathematics (2) 
開課學期
110-2 
授課對象
機械工程學系  
授課教師
潘國隆 
課號
ME2002 
課程識別碼
502E20002 
班次
02 
學分
3.0 
全/半年
全年 
必/選修
必修 
上課時間
星期一3,4(10:20~12:10)星期三2(9:10~10:00) 
上課地點
工綜211工綜211 
備註
本課程以英語授課。本課程以英語授課。
限本系所學生(含輔系、雙修生)
總人數上限:55人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1102ME2002_02 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

In this course, we will investigate the mathematical methods and techniques that are largely used in engineering sciences and related fields. This is an interdisciplinary subject motivated by engineers’ needs of using mathematical approaches in terms of practical and theoretical considerations for analyzing and solving problems of relevance. The second semester of engineering mathematics will be dealt with vector calculus, Fourier series as well as integral and transforms, boundary-value problems, partial differential equations (PDE), and complex analysis. 

課程目標
1. Vector differential calculus
2. Vector integral calculus
3. Orthogonal functions and Fourier series
4. Sturm-Liouville theorem
5. Fourier integral
6. Fourier transform
7. Boundary-value problems and partial differential equations
8. PDE Wave equation
9. PDE Heat equation
10. PDE Laplace equation
11. Complex analysis: functions of a complex variable
12. Complex analysis: integration in the complex plane
13. Complex analysis: series and residues 
課程要求
待補 
預期每週課後學習時數
 
Office Hours
 
參考書目
2. E. Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley
& Sons, Inc., New York, 2011.
3. P. V. O’Neil, Advanced Engineering Mathematics, 7th Edition,
Brooks/Cole Publishing Company, London, 2011.
4. M. D. Greenberg, Advanced Engineering Mathematics, 2nd Ed., Prentice
Hall, 1998. 
指定閱讀
D. G. Zill, Advanced Engineering Mathematics, 7th Ed., Jones & Bartlett Learning, Burlington, 2022. 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
2/14, 2/16  1. Vector differential calculus 
Week 2
2/21, 2/23  Topic 1  
Week 3
2/28 (off), 3/02  2. Vector integral calculus  
Week 4
3/07, 3/09  Topic 2 
Week 5
3/14, 3/16  Topic 2 
Week 6
3/21, 3/23  Topic 2; 3. Orthogonal functions and Fourier series
First Midterm Exam (7-10 pm, 03/25) 
Week 7
3/28, 3/30  Topic 3. (Cont'd) Sturm-Liouville theorem 
Week 8
4/04 (off), 4/06  Topic 3; 4. Fourier Integral and Transforms 
Week 9
4/11, 4/13  Topic 4 
Week 10
4/18, 4/20  5. Boundary-Value Problems in Rectangular Coordinates; 2nd Midterm Exam (7-10 pm, 04/22)  
Week 11
4/25, 4/27  Topic 5 
Week 12
5/02, 5/04  Topic 5; 6. Boundary-Value Problems in Other Coordinates 
Week 13
5/09, 5/11  Topic 6 
Week 14
5/16, 5/18  7. Complex Analysis: functions of a complex variable
Third Midterm Exam (7-10 pm, 05/20)  
Week 15
5/23, 5/25  Topic 7  
Week 16
5/30, 6/01  8. Complex analysis: integration in the complex plane 
Week 17
6/06, 6/08  Topic 8;
Final exam (6/10) 7-10 pm