課程資訊
課程名稱
工程數學二
Engineering Mathematics (Ⅱ) 
開課學期
107-2 
授課對象
化學工程學系  
授課教師
邱文英 
課號
ChemE2008 
課程識別碼
504 27120 
班次
01 
學分
3.0 
全/半年
半年 
必/選修
必修 
上課時間
星期三2(9:10~10:00)星期五3,4(10:20~12:10) 
上課地點
新302新302 
備註
按上學期班別選班。(將以上學期本班名單代入)
限本系所學生(含輔系、雙修生)
總人數上限:61人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1072ChemE2008_01 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Introduction of mathematical tools and theories commonly used in the fields of Engineering 

課程目標
1. be familiar with the relevant theories of Boundary Value Problems (BVPs), eigenvalues, eigenfunctions; know how to apply them to analyzing engineering problems
2. understand the properties of orthogonal functions, and expand general functions by the Generalized Fourier Series
3. be acquainted with the relevant concepts/theories of Fourier Series, Fourier Integral, and Fourier Transform, know how to apply these to analyzing engineering problems
4. be familiar with the important theories and concepts of Partial Differential Equations and utilize them to analyzing common engineering problems (such as heat conduction, diffusion, and wave propagation)
5. understand the important operations and relevant theories of matrices
6. learn how to use different approaches to solving a set of simultaneous differential equations
7. Vector Calculus (line integrals, surface integrals, triple integrals, and vector field theorems) 
課程要求
Matrix II
1. Diagonalization
2. Functions of square matrices
3. Application on ODE

Boundary Value Problems (BVP)
1. Overview of concepts
2. Boundary value problems
3. Sturm-Lioville equation

Generalized Fourier Series
1. Orthogonal and orthonormal functions
2. Orthogonal expansion
3. Fourier series
4. Fourier integral
5. Fourier transform

Partial Differential Equation
1. Overview of concepts and theories
2. Solution by compounding variables
3. Solution by separation of variables
4. Solution by Laplace transforms

Vector Calculus
1. Line integrals, surface integrals, triple integrals
2. Vector field theorem

教學要點概述:
1. 課前預習
2. 評量方法:
(a) 三次考試,各佔25%
(b) 隨堂小考,佔15%
(c) 作業,佔10%
2. 教學方法: 主要利用黑板說明,部分以Power Point配合投影機教學 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
待補 
參考書目
1. 教科書“Advanced Engineering Mathematics” by Erwin Kreyszig, 10th Edition Update
2. 講義 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題