課程資訊
課程名稱
工程數學二
Engineering Mathematics (Ⅱ) 
開課學期
110-2 
授課對象
化學工程學系  
授課教師
李克強 
課號
ChemE2008 
課程識別碼
504 27120 
班次
02 
學分
3.0 
全/半年
半年 
必/選修
必修 
上課時間
星期三2(9:10~10:00)星期五3,4(10:20~12:10) 
上課地點
普406普406 
備註
初選不開放。本班以上學期李克強老師班次名單代入。
限本系所學生(含輔系、雙修生)
總人數上限:57人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1102ChemE2008_02 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Introduction of mathematical tools and theories commonly used in the fields of Engineering 

課程目標
1. be familiar with the relevant theories of Boundary Value Problems (BVPs), eigenvalues, eigenfunctions; know how to apply them to analyzing engineering problems
2. understand the properties of orthogonal functions, and expand general functions by the Generalized Fourier Series
3. be acquainted with the relevant concepts/theories of Fourier Series, Fourier Integral, and Fourier Transform, know how to apply these to analyzing engineering problems
4. be familiar with the important theories and concepts of Partial Differential Equations and utilize them to analyzing common engineering problems (such as heat conduction, diffusion, and wave propagation)
5. understand the important operations and relevant theories of matrices
6. learn how to use different approaches to solving a set of simultaneous differential equations 
課程要求
Textbook “Advanced Engineering Mathematics” by Peter V. O’Neil, 5th Edition, Thomson-Engineering, 2003. Chapter 6, 7, 8, 9, 13, 14, 15, 16, 17, 18.
Course Outline Instruction Hours remark
Topics Contents lecture demonstration experiment others1
Boundary Value Problems (BVP) 1. Overview of concepts
2. Boundary value problems
3. Sturm-Lioville equation
4. Types of Sturm-Lioville BVPs 3

Generalized Fourier Series 1. Orthogonal and orthonormal functions
2. Orthogonal expansion
3. Bessel inequality and Parseval equality 2
Fourier Analysis 1. Fourier series
2. Fourier integral
3. Fourier transform 6
Partial Differential Equation 1. Overview of concepts and theories
2. Heat equations
3. Wave equations
4. Laplace equations 9
Systems of Linear Differential Equations 1. Approach I: use diagonalization of matrix
2. Approach II: use Laplace transform
3. Other approaches 6 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
待補 
參考書目
Handouts are available on http://ceiba.ntu.edu.tw/course/ 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題