課程名稱 |
工程數學二 Engineering Mathematics (Ⅱ) |
開課學期 |
112-2 |
授課對象 |
化學工程學系 |
授課教師 |
蔡偉博 |
課號 |
ChemE2008 |
課程識別碼 |
504 27120 |
班次 |
02 |
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期三2(9:10~10:00)星期五3,4(10:20~12:10) |
上課地點 |
綜602綜602 |
備註 |
限本系所學生(含輔系、雙修生) 總人數上限:65人 |
|
|
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Introduction of mathematical tools and theories commonly used in the fields of Engineering |
課程目標 |
1. be familiar with the relevant theories of Boundary Value Problems (BVPs), eigenvalues, eigenfunctions; know how to apply them to analyzing engineering problems
2. understand the properties of orthogonal functions, and expand general functions by the Generalized Fourier Series
3. be acquainted with the relevant concepts/theories of Fourier Series, Fourier Integral, and Fourier Transform, know how to apply these to analyzing engineering problems
4. be familiar with the important theories and concepts of Partial Differential Equations and utilize them to analyzing common engineering problems (such as heat conduction, diffusion, and wave propagation)
5. understand the important operations and relevant theories of matrices
6. learn how to use different approaches to solving a set of simultaneous differential equations |
課程要求 |
Linear Algebra
1. Matrices,
2. Eigenvalues,
3. Diagonalization
Generalized Fourier Series
1. Orthogonal and orthonormal functions
2. Orthogonal expansion
3. Bessel inequality and Parseval equality
4. Sturm-Lioville equation
Fourier Analysis
1. Fourier series
2. Fourier integral
3. Fourier transform
Partial Differential Equation
1. Overview of concepts and theories
2. Heat equations
3. Wave equations
4. Laplace equations
|
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
指定閱讀 |
Advanced Engineering Mathematics by Erwin Kreyszig, 10th Edition, Wiley |
參考書目 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
上課練習 |
25% |
上課時練習題 |
2. |
考試 |
75% |
共三次,每次25% |
|
針對學生困難提供學生調整方式 |
上課形式 |
以錄影輔助 |
作業繳交方式 |
學生與授課老師協議改以其他形式呈現 |
考試形式 |
延後期末考試日期(時間) |
其他 |
由師生雙方議定 |
|