課程名稱 |
工程數學二 Engineering Mathematics (Ⅱ) |
開課學期 |
106-2 |
授課對象 |
化學工程學系 |
授課教師 |
徐治平 |
課號 |
ChemE2008 |
課程識別碼 |
504 27120 |
班次 |
02 |
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期三2(9:10~10:00)星期五3,4(10:20~12:10) |
上課地點 |
普202普403 |
備註 |
按上學期班別選班。 限本系所學生(含輔系、雙修生) 總人數上限:49人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1062ChemE2008_02 |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Introduction of mathematical tools and theories commonly used in the fields of Engineering |
課程目標 |
1. be familiar with the relevant theories of Boundary Value Problems (BVPs), eigenvalues, eigenfunctions; know how to apply them to analyzing engineering problems
2. understand the properties of orthogonal functions, and expand general functions by the Generalized Fourier Series
3. be acquainted with the relevant concepts/theories of Fourier Series, Fourier Integral, and Fourier Transform, know how to apply these to analyzing engineering problems
4. be familiar with the important theories and concepts of Partial Differential Equations and utilize them to analyzing common engineering problems (such as heat conduction, diffusion, and wave propagation)
5. understand the important operations and relevant theories of matrices
6. learn how to use different approaches to solving a set of simultaneous differential equations |
課程要求 |
Textbook “Advanced Engineering Mathematics” by Peter V. O’Neil, 5th Edition, Thomson-Engineering, 2003. Chapter 6, 7, 8, 9, 13, 14, 15, 16, 17, 18.
Course Outline Instruction Hours remark
Topics Contents lecture demonstration experiment others1
Boundary Value Problems (BVP) 1. Overview of concepts
2. Boundary value problems
3. Sturm-Lioville equation
4. Types of Sturm-Lioville BVPs 3
Generalized Fourier Series 1. Orthogonal and orthonormal functions
2. Orthogonal expansion
3. Bessel inequality and Parseval equality 2
Fourier Analysis 1. Fourier series
2. Fourier integral
3. Fourier transform 6
Partial Differential Equation 1. Overview of concepts and theories
2. Heat equations
3. Wave equations
4. Laplace equations 9
Systems of Linear Differential Equations 1. Approach I: use diagonalization of matrix
2. Approach II: use Laplace transform
3. Other approaches 6
|
預期每週課後學習時數 |
|
Office Hours |
|
指定閱讀 |
待補 |
參考書目 |
Handouts are available on http://ceiba.ntu.edu.tw/course/ |
評量方式 (僅供參考) |
|
|