課程資訊

ENGINEERING MATHEMATICS(I)

99-1

ESOE2021

505 28110

02

Ceiba 課程網頁
http://ceiba.ntu.edu.tw/991math1

1： 一階微分方程式(First-Order Differential Equation)
2：二階微分方程式(Second-order Differential Equation)
3：高階線性微分方程式(Linear Differential Equation with Higher Order)
4: 聯立微分方程式(Systems of differential equations, phase plane, qualitative method)
5：變數係數微分方程式(Differential Equation with Variable Coefficient)
6：拉普拉斯轉換(Laplace Transform)
7：線性代數:矩陣,向量, 行列式(Linear algebra: matrices, vectors, determinants)

Office Hours

E. Kreyszig, “ Advanced Engineering Mathematics”, John Wiley & Sons

(僅供參考)

 No. 項目 百分比 說明 1. 作業 25% 2. 期末考 25% 3. 期中考 25% 4. 期中考 25%

 課程進度
 週次 日期 單元主題 第1週 9/13,9/16 * Geometrical meaning of y’=f(x,y) * Separable equation 第2週 9/20,9/23 * Exact differential equation * Integrating factors * Bernoulli equation 第3週 9/27,9/30 * Second-order homogeneous equation with constant coefficients 第4週 10/04,10/07 * Nonhomogeneous equations * Solution by undetermined coefficients 第5週 10/11,10/14 * Solution by variation of parameters * Forced oscillation & Modeling of electric circuits 第6週 10/18,10/21 * Higher order linear differential equations with constant coefficients * Higher order non-homogeneous equations 第7週 10/25,10/28 * 第一次期中考試 * Homogeneous systems with constant coefficient 第8週 11/01,11/04 * Phase plane, critical point * Criteria for critical point, Stability 第9週 11/08,11/11 * Qualtative method for non-linear systems * Non-homogeneous linear systems 第10週 11/15,11/18 * Power series method * Legendre’s equation 第11週 11/22,11/25 * Fribenius method * Bessel’s equation 第12週 11/29,12/02 * Sturm-Liouville problem * Orthogonal function expansion 第13週 12/06,12/09 * 第二次期中考試 * Laplace transform, Linearity, Shift 第14週 12/13,12/16 * Transform of derivatives and integrals * Unit step function, Dirac’s delta function * Differential and integral of transform 第15週 12/20,12/23 * Convolution * Partial Fractions * Systems of Differential equation 第16週 12/27,12/30 * Matrix multiplication * Gauss elimination * Solutions of a linear system 第17週 1/03,1/06 * Determinants, Cramer’s rule * Inverse of a matrix, Gauss-Jordan elimination