課程資訊
課程名稱
高等結構學
Advanced Structural Theory 
開課學期
102-1 
授課對象
工學院  結構工程組  
授課教師
呂良正 
課號
CIE7024 
課程識別碼
521EM1870 
班次
 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期四2,3,4(9:10~12:10) 
上課地點
土220 
備註
本課程以英語授課。先修科目:結構學.
總人數上限:80人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1021adst 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

(一)前言
(二)定義與觀念
(三)直接勁度法
(四)結構分析程式寫作要領
(五)座標轉換,換向原理及同餘轉換
(六)等值結點力及其應用
(七)聯立方程式求解方法及程式
(八)虛功(位移)原理及其應用
(九)特殊分析程序:濃縮法、子結構、約束處理、半剛性接頭、對稱性考慮
(十)虛力原理及柔度法
 

課程目標
讓學生對結構分析之理論有系統化之瞭解,內容涵蓋矩陣勁度法、柔度法及能量法,並藉由結構分析程式之撰寫達理論與實作相輔相成之功效。 
課程要求
Examination schedules
Midterm examination, to be determined in class
Final examination, as scheduled by the University.
Grade weighting
60% Midterm and final examinations (30% each)
25% Programming assignments
15% Problem sets
Homework policy
1. All assignments can be obtained from http://ceiba.ntu.edu.tw/991adst/
2. No late homework will be accepted.
3. Homework should be handed in as a report of A4 size. 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
1. Sack, R.L. (1989): Matrix Structural Analysis, PWS-KENT Publishing
Company.
2. Weaver, Jr. W. and Gere, J. M. (1990): Matrix Analysis of Framed Structures,
3rd Ed., Chapman and Hall.
3. Pilkey, W.D. and Wunderlich,W. (1994):Mechanics of Structures-Variational
and Computational Methods, Prentice Hall.
4. Kassimali, A. (1999): Matrix Analysis of Structures, Brooks/Cole Publishing
Company.
5. The Mathworks INC(1992): The Student Edition of Matlab, Prentice Hall.1 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
2013/09/12  Ch. 0 Introduction to Matlab 
Week 2
2013/09/19  *Moon Festival, no class. 
Week 3
2013/09/26  *Professor out of country for a meeting, no class. Make-up class at 10/5(Sat) 9:30-12:30 
Week 4
2013/10/03  Ch. 1 Introduction、Ch. 2 Definitions and Concepts 
Week 5
2013/10/10  *National Day, no class. 
Week 6
2013/10/17  Ch. 5 Direct Stiffness Method 
Week 7
2013/10/24  Ch. 6 Programming for FRAME13 
Week 8
2013/10/31  Ch. 7 3D Beam-Column Element: Strength of Materials Approach 
Week 9
2013/11/07  Ch. 8 Coordinate Transformation, Contragredient Principle, and Congruent Transformation 
Week 10
2013/11/14  Ch. 9 Solution of Linear Algebraic Equations 
Week 11
2013/11/21  Ch. 10 Equivalent Nodal Loads; Self-straining Problems 
Week 12
2013/11/28  Ch. 11 Principle of Virtual Displacements 
Week 13
2013/12/05  Ch. 12 Principle of Virtual Displacements
in Framework Analysis 
Week 14
2013/12/12  Ch. 13 Special Analysis Procedures 
Week 15
2013/12/19  Ch. 14 Element Flexibility Matrix 
Week 16
2013/12/26  Ch. 15 Principle of Virtual Forces 
Week 4-1
2013/10/05  Ch. 3 Basic Equations、Ch. 4 Axial Element (Make-up class at 9:30-12:30)