課程資訊
課程名稱
彈性力學一
Theory of Elasticity (Ⅰ) 
開課學期
107-1 
授課對象
工學院  結構工程組  
授課教師
洪宏基 
課號
CIE5005 
課程識別碼
521 U0100 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一2,3,4(9:10~12:10) 
上課地點
新501 
備註
總人數上限:34人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1071CIE5005_elastic 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

(A). Indicial notation and Cartesian tensors
(1). Kinematics
(2). Equilibrium
(3). Principle of virtual work and duality
(4). Constitution
(5). Summary of equations, various formulations of problems
(6). Problem solving a) One-dimensional problems b) Two-dimensional problems c) Bars (Saint-Venant's problem of extension, bending, torsion, and flexture) d) Plates e) Three-dimensional problems  

課程目標
To introduce the theory of elasticity (and coupled elasticity), including preliminaries on tensors and how to formulate and solve the various kinds of problems. The relations between the mechanics-of-materials approach and the theory-of-elasticity approach are clarified.  
課程要求
(1) 6 exercises 33.3 percent,
(2) midterm exam 33.3 percent,
(3) final exam 33.3 percent.
(4) (optional 1 report; 10 percent bonus) 
預期每週課後學習時數
 
Office Hours
每週一 12:10~12:30 備註: Please go directly to my lab at Engng. Complex Bldg. (工綜) Room No. B20 or to my office at Civil Research Bldg. (土研) Room No. 509 to see if I am available, or make appointment via e-mail hkhong@ntu.edu.tw 
參考書目
(1) I. S. Sokolnikoff, Mathematical Theory of Elasticity, New York: McGraw-
Hill, 1956.
(2) S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd edition, New
York: McGraw-Hill, 1970.
(3) Y. C. Fung, Foundations of Solid Mechanics, Englewood Cliffs, N.J.:
Prentice-Hall, 1965.
(4) J.R. Barber, Elasticity, Dordrecht: Springer, 2010. (本校圖書館有電子書)
(5) M. H. Sadd, Elasticity Theory, Applications, and Numerics, Amsterdam:
Elsevier, 2005.
(6) A. P. Boresi, K. P. Chong, and J. D. Lee, Elasticity in Engineering
Mechanics, Hoboken, N.J.: Wiley, 2011. (本校圖書館有電子書)
(7) M. E. Gurtin: The Linear Theory of Elasticity. Encyclopedia of Physics,
Mechanics of Solids II, VIa/2, pp. 1-295. Berlin: Springer, 1972.
(8) V. G. Rekach, Manual of the Theory of Elasticity, Moscow: Mir Publishers,
1979.
(9) H. Reismann and P. S. Pawlik, Elasticity, Theory and Applications, New
York: Wiley, 1980.
(10) J. J. Connor, Analysis of Structural Member Systems, Ronald Press, 1976.
(11) A. H. England, Complex Variable Methods in Elasticity, London: Wiley-
Interscience, 1971.
(12) A. E. Green and W. Zerna, Theoretical Elasticity, 2nd edition, Oxford:
Clarendon Press, 1968; New York: Dover, 1992.
(13) A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th
edition, Cambridge, UK: Cambridge University Press, 1927; New York: Dover,
1963.
(14) L. E. Malvern, Introduction to the Mechanics of a Continuous Medium,
Englewood Cliffs, N.J.: Prentice-Hall, 1969.
(15) R. W. Ogden, Non-linear Elastic Deformations, Chichester: Ellis Horwood,
1984; New York: Dover, 1997.
(16) J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of
Elasticity,
Englewood Cliffs, N.J.: Prentice-Hall, 1983; New York: Dover, 1994.
(17) L. D. Landau and E.M. Lifshitz, Theory of Elasticity, Oxford: Pergamon
Press, 1986.
(18) T. C. T. Ting, Anisotropic Elasticity: Theory and Applications, New York:
Oxford University Press, 1996. (本校圖書館有電子書)
(19) S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body,
San Francisco: Holden-Day, 1963.
(20) Weian Yao, Wanxie Zhong, and Chee Wah Lim, Symplectic Elasticity,
Singapore: World Scientific Publishing, 2009. (本校圖書館有電子書)
(21) N. I. Muskhelishvili: Some Basic Problems of the Mathematical Theory of
Elasticity. Groningen, The Netherlands: Noordhoff, 1963. 
指定閱讀
Lecture notes 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Exercises 作業 平時成績  
33.3% 
6 sets of exercises 作業成績  
2. 
Midterm exam 期中考 
33.3% 
closed books 
3. 
Final exam 期末考 
33.3% 
closed books 
4. 
participating in discussions (optional 1 paper)  
10% 
平時上下課時討論參與度 主動 翻轉度 
 
課程進度
週次
日期
單元主題
第1週
9/10  Appendix A Indicial notation and Cartesian tensors (3h) 
第2週
9/17  Appendix A Indicial notation and Cartesian tensors (1h)
Ch1 Kinematics (2h) 
第3週
(9/24)  (Mid-Autumn holiday) 
第4週
10/1  Ch1 Kinematics (3h)
 
第5週
10/8  Ch2 Equilibrium (3h)
 
第6週
10/15  Ch2 Equilibrium (1h)
Ch3 Principle of virtual work and duality (2h) 
第7週
10/22  Ch3 Principle of virtual work and duality (1h)
Ch4 Constitution (2h) 
第8週
10/29  Ch4 Constitution (2h)
Ch5 Summary of equations and various formulations (1h) 
第9週
11/5  Ch5 Summary of equations and various formulations (3h) 
第10週
11/12  Midterm exam. (Appendix A and Chapters 1-5) 
第11週
11/19  Ch6 One-dimensional problems (1h)
Ch7 Two-dimensional problems (2h) 
第12週
11/26  Ch7 Two-dimensional problems (3h) 
第13週
12/3  Ch7 Two-dimensional problems (2h)
Ch8 Bars (Saint-Venant problems) (1h)
 
第14週
12/10  Ch8 Bars (Saint-Venant problems) (3h) 
第15週
12/17  Ch8 Bars (Saint-Venant problems) (1h)
Ch9 Plates (2h) 
第16週
12/24  Ch10 Three-dimensional problems (3h)  
第17週
12/31  (New Year holiday) 
第18週
1/7  Final exam. (Chapters 6-10) 
第15-1週
12/22(Saturday)  Ch9 Plates (1h)
Ch10 Three-dimensional problems (2h)