課程資訊

Finite Element Method

112-1

ME7112

522 M2570

3.0

ME 7112 is a graduate level course on the theory and implementation of the finite element method (FEM) for solving boundary value problems in solid mechanics. On completing the course of computational methods in solid mechanics, you should be: 1. Familiar with the theoretical foundations of the finite element method; 2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics; 3. Able to apply commercial finite element codes. Experience with MATLAB is necessary. All students will need to write computer programs for this course study.

Goals of ME 7112:
1. Familiar with the theoretical foundations of the finite element method.
2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics
3. Able to apply commercial finite element codes.

1、作業與期末報告，無正當理由，一律不予補交。
2、上課不實施點名，出席者請維持良好上課秩序。
3、充實知識與技術，請依提供補充教材按序學習。
Academic honesty is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person's work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest whether or not the effort is successful. The academic community regards academic dishonesty as an extremely serious matter, with serious consequences that range from probation to expulsion.

Office Hours

1. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, 1993.
2. T. J. R. Hughes, The Finite Element Method, Prentice Hall, 1987.
3. K. J. Bathe, Finite Element Procedures, Prentice Hall, 1995.
4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed., Butterworth-Heinemann, 2005.

(僅供參考)

 No. 項目 百分比 說明 1. Assignment 70% 指定作業：70 %，全學期七次指定作業，指定當天兩週後繳交 2. Project 20% 期末報告：20 %，期末報告當天繳交書面報告 3. Bonus 10% 平時成績：10 %，以學期平時表現評分，並保有依全班整體表現而有調整學期成績總分之可能彈性

 課程進度
 週次 日期 單元主題 第1週 9/5 Chap. 1 - Introduction to the finite element method in solid mechanics 第2週 9/12 Chap. 2 - The Finite Element (FE Method for Static Linear Elasticity 2.1 Derivation and implementation of a basic 2D FE code with triangular constant strain elements 第3週 9/19 2.2 Generalization of finite element procedures for linear elasticity 2.3 Accuracy and convergence 第4週 9/26 Chap. 3 - Advanced Element Formulations 3.1 Shear locking and incompatible mode elements 第5週 10/3 3.2 Volumetric locking: Reduced integration and Bbar methods 第6週 10/10 Holiday 第7週 10/17 3.3 Mixed (hybrid) elements 第8週 10/24 Chap. 4 - The finite element method for dynamic linear elasticity 4.1 Explicit time integration - the Newmark method 4.2 Implicit time integration 第9週 10/31 4.3 Modal analysis and modal time integration 第10週 11/7 Chap. 5 - Finite element method for nonlinear problems 5.1 Small strain hypoelastic materials 第11週 11/14 5.2 Small strain viscoelasticity 第12週 11/21 5.3 Large strain elasticity 第13週 11/28 5.4 Large strain viscoelasticity 第14週 12/5 5.5 Explicity dynamics for nonlinear problems 第15週 12/12 Chap. 6 - Special topics (Time permitting) 第16週 12/19 Final Project Presentation