課程名稱 |
有限元素法 Finite Element Method |
開課學期 |
112-1 |
授課對象 |
工學院 機械工程學系 |
授課教師 |
王建凱 |
課號 |
ME7112 |
課程識別碼 |
522 M2570 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期二6,7,8(13:20~16:20) |
上課地點 |
工綜215 |
備註 |
應用力學知識領域選修。 總人數上限:70人 |
|
|
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
ME 7112 is a graduate level course on the theory and implementation of the finite element method (FEM) for solving boundary value problems in solid mechanics. On completing the course of computational methods in solid mechanics, you should be: 1. Familiar with the theoretical foundations of the finite element method; 2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics; 3. Able to apply commercial finite element codes. Experience with MATLAB is necessary. All students will need to write computer programs for this course study. |
課程目標 |
Goals of ME 7112:
1. Familiar with the theoretical foundations of the finite element method.
2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics
3. Able to apply commercial finite element codes. |
課程要求 |
1、作業與期末報告,無正當理由,一律不予補交。
2、上課不實施點名,出席者請維持良好上課秩序。
3、充實知識與技術,請依提供補充教材按序學習。
4、學術誠信 (Academic honesty):
Academic honesty is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person's work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest whether or not the effort is successful. The academic community regards academic dishonesty as an extremely serious matter, with serious consequences that range from probation to expulsion. |
預期每週課後學習時數 |
|
Office Hours |
另約時間 備註: TA:周峮毅(機械所博士班,f10522543@ntu.edu.tw)& 柯秉良(機械所博士班,d09522011@ntu.edu.tw)
Appointment by e-mail only |
指定閱讀 |
見參考書目 |
參考書目 |
1. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, 1993.
2. T. J. R. Hughes, The Finite Element Method, Prentice Hall, 1987.
3. K. J. Bathe, Finite Element Procedures, Prentice Hall, 1995.
4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed., Butterworth-Heinemann, 2005. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Assignment |
70% |
指定作業:70 %,全學期七次指定作業,指定當天兩週後繳交 |
2. |
Project |
20% |
期末報告:20 %,期末報告當天繳交書面報告 |
3. |
Bonus |
10% |
平時成績:10 %,以學期平時表現評分,並保有依全班整體表現而有調整學期成績總分之可能彈性 |
|
週次 |
日期 |
單元主題 |
第1週 |
9/5 |
Chap. 1 - Introduction to the finite element method in solid mechanics |
第2週 |
9/12 |
Chap. 2 - The Finite Element (FE Method for Static Linear Elasticity
2.1 Derivation and implementation of a basic 2D FE code with triangular constant strain elements |
第3週 |
9/19 |
2.2 Generalization of finite element procedures for linear elasticity
2.3 Accuracy and convergence
|
第4週 |
9/26 |
Chap. 3 - Advanced Element Formulations
3.1 Shear locking and incompatible mode elements |
第5週 |
10/3 |
3.2 Volumetric locking: Reduced integration and Bbar methods |
第6週 |
10/10 |
Holiday |
第7週 |
10/17 |
3.3 Mixed (hybrid) elements |
第8週 |
10/24 |
Chap. 4 - The finite element method for dynamic linear elasticity
4.1 Explicit time integration - the Newmark method
4.2 Implicit time integration |
第9週 |
10/31 |
4.3 Modal analysis and modal time integration |
第10週 |
11/7 |
Chap. 5 - Finite element method for nonlinear problems
5.1 Small strain hypoelastic materials |
第11週 |
11/14 |
5.2 Small strain viscoelasticity |
第12週 |
11/21 |
5.3 Large strain elasticity |
第13週 |
11/28 |
5.4 Large strain viscoelasticity |
第14週 |
12/5 |
5.5 Explicity dynamics for nonlinear problems |
第15週 |
12/12 |
Chap. 6 - Special topics (Time permitting) |
第16週 |
12/19 |
Final Project Presentation |
|