課程資訊
課程名稱
有限元素法
Finite Element Method 
開課學期
112-1 
授課對象
學程  奈米科技學程  
授課教師
王建凱 
課號
ME7112 
課程識別碼
522 M2570 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期二6,7,8(13:20~16:20) 
上課地點
工綜215 
備註
總人數上限:70人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

ME 7112 is a graduate level course on the theory and implementation of the finite element method (FEM) for solving boundary value problems in solid mechanics. On completing the course of computational methods in solid mechanics, you should be: 1. Familiar with the theoretical foundations of the finite element method; 2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics; 3. Able to apply commercial finite element codes. Experience with MATLAB is necessary. All students will need to write computer programs for this course study. 

課程目標
Goals of ME 7112:
1. Familiar with the theoretical foundations of the finite element method.
2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics
3. Able to apply commercial finite element codes. 
課程要求
1、作業與期末報告,無正當理由,一律不予補交。
2、上課不實施點名,出席者請維持良好上課秩序。
3、充實知識與技術,請依提供補充教材按序學習。
4、學術誠信 (Academic honesty):
Academic honesty is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person's work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest whether or not the effort is successful. The academic community regards academic dishonesty as an extremely serious matter, with serious consequences that range from probation to expulsion. 
預期每週課後學習時數
 
Office Hours
另約時間 備註: TA:周峮毅(機械所博士班,f10522543@ntu.edu.tw)& 柯秉良(機械所博士班,d09522011@ntu.edu.tw) Appointment by e-mail only 
指定閱讀
見參考書目 
參考書目
1. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, 1993.
2. T. J. R. Hughes, The Finite Element Method, Prentice Hall, 1987.
3. K. J. Bathe, Finite Element Procedures, Prentice Hall, 1995.
4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed., Butterworth-Heinemann, 2005. 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Assignment 
70% 
指定作業:70 %,全學期七次指定作業,指定當天兩週後繳交 
2. 
Project 
20% 
期末報告:20 %,期末報告當天繳交書面報告 
3. 
Bonus 
10% 
平時成績:10 %,以學期平時表現評分,並保有依全班整體表現而有調整學期成績總分之可能彈性 
 
課程進度
週次
日期
單元主題
第1週
9/5  Chap. 1 - Introduction to the finite element method in solid mechanics 
第2週
9/12  Chap. 2 - The Finite Element (FE Method for Static Linear Elasticity
2.1 Derivation and implementation of a basic 2D FE code with triangular constant strain elements 
第3週
9/19  2.2 Generalization of finite element procedures for linear elasticity
2.3 Accuracy and convergence
 
第4週
9/26  Chap. 3 - Advanced Element Formulations
3.1 Shear locking and incompatible mode elements 
第5週
10/3  3.2 Volumetric locking: Reduced integration and Bbar methods 
第6週
10/10  Holiday 
第7週
10/17  3.3 Mixed (hybrid) elements 
第8週
10/24  Chap. 4 - The finite element method for dynamic linear elasticity
4.1 Explicit time integration - the Newmark method
4.2 Implicit time integration 
第9週
10/31  4.3 Modal analysis and modal time integration 
第10週
11/7  Chap. 5 - Finite element method for nonlinear problems
5.1 Small strain hypoelastic materials 
第11週
11/14  5.2 Small strain viscoelasticity 
第12週
11/21  5.3 Large strain elasticity 
第13週
11/28  5.4 Large strain viscoelasticity 
第14週
12/5  5.5 Explicity dynamics for nonlinear problems 
第15週
12/12  Chap. 6 - Special topics (Time permitting) 
第16週
12/19  Final Project Presentation